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The irregular character of the problem [1 to 4] of the minimax of the time-to-encounter of
two linear homotypic objects is discussed. The problem is regularized by introducing a dis-

crete scheme of variation of the predicted instant of encounter. A strategy is constructed
which guarantees a result which is in a certain sense optimal for the pursuer to within an

arbitrarily small 2 > 0.

1. Let us supposed that the motions of the pursuing and pursued objects, y(t) and 2(t)
respectively, are described by the linear differential Egs.

dy/dt = Ay + Bu (1.1)
dzldt = Az -+ Bv (1.2)

Here y(t) = {y 1{t),0u0s yo(t)} and z(¢) = {z,(2),..., 2,(e)} are the phase coordinate vectors
of the controlled objects; u and v are the r-dimensional vectors of the controlling forces;

A and B are coustant matrices of the corresponding dimensicnalities. Let us isolate certain
phase coordinates y;, and z;, (k = 1,..., m < n) whose coincidence at the instant of mee-
ting ¢t = O is the pursuit goal. Without limiting generality we can assume that i, = k. We
shall consider the chosen coordinates as the controlled coordinates [5]. From now on it
will be convenient to consider the sets of coordinates {y, | = ¥{mps fz, 1= 2m) (i = Leee, m)
as vectors {g ,} = ¢ (i = 1,...,m) in the m~dimensional space Q.

Let us investigate the problem [4] of the minimax of the time-to-eacounter of the objects
over a portion of the isolated coordinates as a differential positional pursuit game [1 to 3}
under the condition that the control resources u{t) and v{t) available for use for ¢ > 7 are at
each given instant T restricted by integral conditions of the form

o]

i@, \ 1o @y izde v (e) (1.3)

T
From the conditions of the problem the control u at each instant 7 must be formed in
accordance with the feedback principle on the basis of measurements of the quantities y{(7)
2(7), u(7), and v(7), i.e. in the form

vt =ulylt], sz}, plz], v Is]] 4.8
The pursued player is amenable to both the program control v = v{t), t 37, and to the
feedback control(*)

*) See[6], p. 535 for an explanation of our use of parentheses and square brackets to de-
note controls as functious of time.
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vitl=vly vl z [z}, p [2}, v [*]] 1.5)

We must emphusize that the pursuer is not notified of the controls v = v{t] or v = vl()
chosen by the pursued player for instants ¢ > 7. The strategies u and v, i.e. the sets of
functions of the form (1.4) and (1.5), will be considered permissible provided that the fol-
lowing conditions are fulfilled during their realizations u = ultl, v = vit] orv = vie):

a) limiting conditions (1.3} are not viclated; b} Egs. {1.1) and {1.2) do no lose meaning.

Thus, the problem consists in finding from among the permissible strategies optimal
strategies u®= u®[y, 1, i, v] and v°= o[y, 2, i, 1] such that the following condition is
fulfilled for all initial values yltg), s{¢,), 1 (2y), and v {z;) (from the specified range of their
variation):

T, po = min, max, Ty, » (1.6)

where T, , = '&u., — T is the time~to-encounter of the motions.

The game problem on the encounter of two controlled motions is solved in [5] for m = n.
In this case problem (1.6) is solved by the external aiming rule which consists in the aiming
at each instant ¢ = Tof the motions y{(t) and z{(¢) towards the point ¢°[7] of osculation of the
boundaries of the attainability domains Gl[’r, y[’r] culrl, '&o] and Gz(’r, 1 7, viT], \‘}0]
coustructed for the instant of absorption ¢ = @&, of the process z(t) by the process y(¢)
(e.g. see [3], pp. 7 and 8), If the pursuer constructs his own strategy on the basis of the
extremal siming rule, then for any permissible v throughout the time-to-encounter the boun-
daries of the attainability domains G‘['r, yIrl, ul7l, ﬁol and Gg(’?'. A7), vi7], '&01 oscu-
Iate at a aingle point, and pursuit is successfully 8ccomplished at t £ 9, provides that the
domain G, lay inside the domain G, at the initial instant of pursuit,

The problem of the minimax of the time-to-encounter of the motions yp,;(t) (1.1) and zppmy
() {1.2) is more complicated in the case where m <n. Here, as with m = n, we can construct
the extremal strategies

el e
U [7] = ;{;,g_—v}mwxm,x (:1(7) (1.7
voltl = (rT'—TL 2] Y iel e (O (1.8)

where wiyqy, x(71 (8) (7 < t < B°) is the optimal program control for the ancillary problem on
the mm-fgr of the system
z = Az + Bw (1.9
from the state
z==zltl =y ltl— z [1]
to the poaition correaponding to

yimy (8°) — zpm) (8°) = 2y (3°) = 0

under the restriction
o0

flvopa]" <pim—vini=x=m (1.10)

and under the condition
To=9"—1=min,T, (1.11)
This ancillary problem will be called Problem A. In addition to Problem A we shall later

need ancillary Problem B on the transfer of system (1.9) from the state x[7] to the position

£ [my) (@) = 0 in the specified time T = ¥ — T under the condition
8

[Siw®pa]* = min (1.12)

-
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Let us introduce the notation
8

terel v 8) = [{lu) g, O] (1.13)

where w°x[,]. ¢ () is the solution of problem B. It then turns out that the instant ¢t = B° of
arrival of the motion x (m] (t) at the position x[m) = O in problem A coincides with the ins-
tant of absorption ¥, which ia the smallest positive root of Eq.

C(zlxl, v, &) =plt] —v [t] == [1] (1.14)

If the players are guided by the extremal strategies ug (1.7) and v (1.8) then the mee-
ting occurs at the instant of absorption t =, just as in the case m = n. But now, in con-
trast to the case m = n, the extremal strategy ug (1.7) does hot guarantee for all permissi-
ble v the uniqueness of the point of osculation ¢°[7] throughout the time-to-encounter 7.

This statement can be verified, for example, in the case of the motions

dy dya dys dyy
"g;“ =Y g =UL g =Y6 g = (1.15)
dz dz dzs dzg

“f= 28 —&ti =, g =In g =T (1.16)

where it is necessary to effect a meeting only in the coordinates y,, z, and y3, #3. The
extremal control uotﬂ (1.7) in this case is given by

3 3
up == {— T TET (14 22To)y — 77 —p-_}-f:-;,— (zs + cho)} (1.17)

where the quantity Ty is the smallest positive root of Eq. (1.14),

3 2y TP -4 TyR':
{ [(z1-t= )TB (2 -+ 75 )I} v (1.18)
If the pursuer makes use of the control u (1.17) and if the pursued player chooses the
control v(t) = Y = const, where | | is a sufficiently small quantity, then there exist initial

data y (ta), z (¢5), u{to) and v (¢y) such that the domains G and G, merge at some instant
t=T, prior to the coincidence of y,{t), y; () and z, (¢), z5{t). But at the instant of merging
of the attainability domains, which in the general case of system (1.1), (1.2) under restric-
tions (1.3) constitute congruent and similarly oriented ellipsoids, the number of points of
osculation g° of their boundaries becomes infinitely large and the extremal aiming rule is
vielated. At such instants the pursued player has the opportunity of escaping from the pur-
suer's domain of attainability.

Thus, for m < n the choice of the control u{7] on the basis of the extremal aiming rule
does not guarantee meeting of the motions ¥ fm] [} and Z[m] [¢] in atime Tt < Oy It
turns out, furthermore [4], that for m < n it is generally impossible to construct a control
u=u*ly[7], 7], y.[’r}, v{7]] which would ensure meeting within a time t< 9 [7]. These
difficulties for the case m < n can be overcome, however, through suitable regularization of
the problem.

2. Our earlier paper [4] contains a regularization of the above problem based on the intro-
duction between the boundaries of the domains G, and G, of the intervening layer afforded
by an additional margin € (7)> 0 in the control resource u (7).

Here we present another regularization of the problem based on a discrete control scheme
which(aﬁlh;ws us to bring the point Yim} [d] into an arbitrarily small neighborhood of the peint
X fm .

[Ifet ug assume that at the initial instant of pursuit ¢ = ¢, the domain 62[‘0' 2(zg), v (¢y),
’ﬂo] lay inside the domain Gx[‘O' y(eg), ity ‘Oo] and that their boundaries osculated at
the single point q°[t°]. The pursuer can then make use of extremal control (1.7}, at least
until the instant ¢t = 7, at which the domains
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Gy [ty zlx,], v [1.], 8} Gy (1., ¥ [, ]p 7], 8}
merge. We introduce the notation
v [t*] =Yur 2 [‘c*l = Zpy B [f‘] =g V [T*] = Vg

The Eq. ‘)}[_T.} = %o =ity ~Ve = 0is valid at the instant ¢ = 7,

At the instant ¢ = 7, , i.e. at the pointy,, z,, %, = 0, the most natural course is to
choose the control u[7,] from the randomization condition {2} for extremal strategies in the
case of an infinite number of extremal aiming points. The pursuer can be aimed at any of
these points at each instant ¢t = 7 with equal probability of success. But by virtue of the
symmetry of the attainability domain each extremal control is associated with an extremal
control of equsl in norm but opposite sign. Hence, the average value of all the extremal
strategies at the instant of merging of the attainability domains is equal to zero. Hence, it
is most natural (*) to set uf7,] = uly,s 20 02,, v,]=0.

However, at subsequent instants ¢ > 7, the domains G, and G, are, as a rule (**}, no
longer merged, so that it becomes necessary to choose the control uly[7], 2[7], ul7],
v[71] from other considerations, e.g. by once again setting u = ug (1.7). This renders the
right sides of differential Eqs. (1.1} irregular; they tumn out to have a discontinuity at the
point x¢ = yy — 24,%% = 1o — Ve = 0, It is therefore advisable to couvert to a discrete con=
trol aystem, Let us choose a small A7 > 0 and set u (¢) = O for the time T« L t < Ty + AT
It is easy to ahow that if the domain G, remains inside the domain G, throughout the time
t> T,, then the encounter will occur not later than at the instant ¢ = §[7, 1. The contrary

case is unfavorable to the pursuer.
Let us suppose that the pursued player has chosen a control v(¢) (Ta L t <Tu + AT)

such that a portion of the domain

Gy [ty + AT, zlt, +AT], viv, + A7), & [,
lies outside the boundaries of the domain
Gy Ity + A%, ylv, + AT p v, + A, 8, 1,11

In accordance with Eq, (1.14) a new instant of absorption '&o['r. + A7) occurs at the
instant £= 7, + A7 and the domain G,[7, + AT, z[7, + A7), v 7, + A7}, Bl7, + Arl]
lies inside the domain G, (7, + A7, y[7, + A7), ul7y + A7], 9,07y + AT1], touching it
at the single point ¢ *. It is then possible to make use once again of extremal strategy (1.7),
aiming towards the point ¢* until the domains G, and G, merge once again.

It is reasonable to hope that by cyclically altemating the extremal aiming rule with a
control constructed in a short time A7 > 0 on the basis of the randomization condition we
might obtain a regular strategy (an R-strategy) which guarantees encounter at an instant ar-
bitrarily close to the instant of absorption {as A7 -+ 0). Unfortunately, this simple technique
of choosing the control u does not yield the desired resnlt.

Let us illustrate this for the case of motions {(1.15) and (1.16). Let us assume that the
instant ¢ = T4 = O when the domains G, and G, merge has arrived, and that the position
y(‘fe] wfi-a,1+ 8,0, of, :[ 7] =to, R, 0, 0} was attained at this instant; in addition,
we assume that u{7,] = v[74] = 1, '&o['f..] = a> 0. Stipulating that u(e) = {0, O}, v (1) = { ¢/,
0} during the time A 7, we can write ont Eq. (1.18) for determining the instant of absorption
&7, + ATl,

[ — Vi—¥arp o~ Ar)'—-a[(m— \p-i‘-;——a) + (1 — pAT) (& — A-r)]2=0 24)

It is easy to see that for & amall ¢/ > O the smallest positive root of Eq. (2.1) which is

*) The control u[7s] chosen from the condition min, max, de/dt is similar. Here & is an
estimats of the posaible overhang of the domain G, beyond the domain G (in some con-
venient metric) (see below Section 3)

**} The domains G , and G, will certainly drift apart provided that the controls u and v do
not vanish simultaneously for¢> 7,.
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equal to 9,[% + A7] is arbitrarily large for a sufficiently small A7. Heace, the control
law just described generally cannot insure encomnter at instants close to the instant of
absorption ®,{7,]. We can also verify that this technique doea not guarmntee &-convergence
fort < O [Tnf.

Let us attempt to construct the R-strategy in a different way. Let us hold the number

[v,] = €, fixed and assume once again that foru (¢) ®0 (74 Lt <7 + AT) a portion

of the Jomain G, I+ AT, 1l + A1), vl7T, + A 7], 9.] has exceeded the boundary of the
domain G, [Te + AT, y[Te + ATL pl 70 + A7), 901, Let e[7] be the amallest quantity
necessary for the domain 62[7', s[7], v[T].ﬂ,.] to lie inside the domain Gl[T, y['r‘], ul7]
+ ¢ [7], 8,] for instants ¥ > v, .Hence, & [t] can be determined from the condi-
tion

e lt]l =0 (z ], 7, 8,) —x 7] 2.2)
where £ can be computed from Formula (1.13). Once the time A7 has elapsed we choose
the pursuer’s extremal control in the form

U 2 ) E
U, [T] ETOETION wx[t]'t[‘](f) (23)
where w;[ <1, %0+] (2) is the solution of problem A under the condition

Slwopa]" <xix+el =2 (2.4)

Let the pursuer continue to make use of the control u;[T] {2.3) until the domains G
(v, y [], p [v] + e [7], 8,] and G, (7, z [7], v [7], ®,] merge, i.e. until {[7
venishes. After this for the time A7 we once again set u (¢) = 0, etc. If the control techni-
que just described did, in fact, guarantee arhitrary smallness of the quantity € (0,) as
AT +0 for all permissible v, then by an instent ¢ < @, the motion Ym) [£] would en-
ter an arbitrarily small neighborhood of the point Zpmj (ﬁ*), which would signify satisfac~
tory solution of the problem. This does not happen, however.

Indeed, from the definitions of the quantities { and e (see (3.13), (3.14), and (3.21) be-
low), we find that for {= 0

a5 - dg /de
de = XTI FI2v (235)

while for small £> 0 we have

dg e Pl 4 (w° /L, 8

de T e||w°]|’;—ﬂ-—||5p|?ﬁv~1) +0(0) (2.6)
where 8v =v — yw%{ and where O(() is an infinitesimal of order { . The quantity d {/d¢
in (2.5) is strictly positive if v'# 0 and venishes for v = 0. If v = ¥ = const, where the quan-
tity | ¥| is sufficiently small, then d { /d & (2.5) is arbitrarily close to unity. However, for
{ > 0 and & <v we see that, first, d{/dt < 0, and second, that the quantity d{/de (2.6) is
close to two. Hence, for such a v (however small our XT) the function &(t) can increase
proportionally to time with a proportionality coefficient which does not tend to zero as A7 -
-+ 0. This means that € (¢) cannot be made smaller than a preselected positive number by the
instent ¢t = O, . Hence, as A7 » 0 this method of constructing the control u for v = t = const
gives rise to a characteristic slippage state which produces a considerable increase in &

.

3. In this section we shall develop a solution of the problem which will enable us to
overcome the difficulties described above. The modification of the problem about to be dis-
cussed is based on a discrete scheme of variation of the control u which is accompanied,
as towards the end of Section 2, by braking of the quantity @ [T]. However, we shall now
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make use of a smoothed extremal control, This will enable us to circumvent the difficul
ties which we confronted in Section 2. Let us now describe the proposed method of con-
structing the control.

Let ’Tki (k = 0, 1,...) be a sequence of instants of time; let Tgsy — Tx = A.Let
the symbol w4 [£] denote the control u, which chenges only at the instants £ = Tj.
The value of ua [Z] in the interval [Ty, Tis1)<is then determined only by the quanti-
ties realized by the instant ! = Tj. In choosing the control u in this way we take the
quantity

¥, = sup, {lim sup [sup,Tyj, o1} (6>0) (3.1)

as our criterion of Lhe‘puuuit results. "
Here the number T“Av denotes the instant § = T - T"Av” at which the condition

W 5+ T1 — g [t + T1[| <0 3-2)
is falfilled for the first time for the chosen control v{t) and the chosen law for constructing
the control u 5 [£], and for the stipulated initial state ¥ [1], z [t], p [%], v [t]. The
problem now consists in choosing the optimal control 4°[¢] which gives the minimum

T° = yy3 = minyy, 3.3)
for any initial conditions y [t], z [7], p [x], v [t]from the domain of their possible
variation. As our arguments which determine the extremal control ua [£]® in the inter-
vals [Ty, Ti+1) we take the values of the variables y [T:], z [Ti], p [Tel, v [1,] and
of the ancillary variable & [Ty] whose meaning will be explained below. Thus, we con-
struct the control Ua [£]° in the form

ua [t1° = w {y (%], 2[%] o] v B [nad P (e E<Thr) (3.9)

The algorithm which determines the right side of (3.4) and the sequence of values
9 [v,] is as follows, Let pursuit begin at £ = T,. From now on we shall always assume
that the inequality u [7,] > v [7,] is fulfilled at ¢ = T, and that Problem A has the
finite ?ollition Ty lrpl for t =1, z 7] = y [1] — z [1,], % [1,] =p [v,] —
— v [tl.

Letusset @ [t4] = & [t = v, + T, [15]. The control ualtl® in Formula (3.4)
is defined by the following two equations of differing form:

i % (5] >0
ua P =5Eul @) (<< (3.5)

if % [r,] =0
us[t1°=0 (te St <<71) (3.6)

Now let T=T; > Ty. We shall determine the quantities ¢[7;] recurrently; thus, we
assume that €[7;_,] is known at the instant T = T, . If the quantity % [T ]=p7,]
— ¥[tx]l 5> O was realized at the instant T==T, then we once again solve problem A
for the realized T=1,, z [T l=y [t;] — zl7), » = = [nl.

Let us assume first that solution of this problem yields

Tolrg] <V [ka]l — % (3.7
We can then set & [1,] = 7, + T [1;] and
if % [fk] > 0

[® .
Ua [tlo = tl_.‘:%' w, [l % [7y) (*x) (T << 7yy) (38)
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i xlnl=20
ualt)P=0 (T <8< Tyyy) (3.9)

On the other hand, if problem A under consideration does not have a solution which sat~
isfies condition (3.7), or if the realized quantity %[ty] <O is smaller than zero, then
what we must do is solve problem B under the conditions T = Ty, z [T;], @d T = &
[*x-1] — Tx. Let the solution of this problem yield the quantity § [7;]. It is clear that
now § [Ty] >% [%;]. The next step is to solve problem A for T = Ty, Z [7y] and un-

der the condition
<O

s
[ lvopa]" <tm
:
k
This solution clearly gives us the quantity Ty [7,] < O ltk-y] — Ty Let us set
dind=n+71, [Tx]. The value of the control s [£]° now depends on the value of

elnl = In] —x [t >0 (3.10
Specifically, we set
it § [v] <e lwl
ua (11 =EXE 0l ) ¢ () @3.41)

it {ln]>elm]

pIv%] o

uy [t)° = AP (%) (3.12)

Construction is carried on until & [ty] > Ta. Control (3.4) constructed in this way
solves problem (3.1) to (3.3). It turns out here that T° [t] = 7, [7]. Let us prove this
result, First, let T == T3 . To begin with, let us verify that for any permissible choice of
v [t] (t > 7,) and for u = ua [t]° the required o ~convergence (3.2) of the motions
Yim] [t] and  zgm) [£] occurs not later than at the instant ¢ = 1, + T, [7,] provided
the quantity A is sufficiently small.

To show this it is sufficient to verify that for small A the quantity & [T;) remains ar~
bitrarily small with increasing time Ty provided that ¢ [1,] — T, > 1 (&). (Here 7 (8)
and € are infinitesimals). In fact, as already noted in Section 2, the quantity g [t,] is the
increment which must be added to the control resource 4 {71;1 in order for the attainability
domain G, [1y, y [1,], b [7] + & [7;], © [7}]] to encompass the domain G, [7,,
2 (v, v [, & [7)).

But if the quantity & [Ty] is small, then the domain G, lty, z [ty), v [1,)],0 [1,]]
lies in a amall o -neighborhood of the domain Gy [y, ¥ [Tlsp [7], © [Tk]i Since (by
construction) & [1,] < 1, + T, [7,] and since the domains G; and G, contract to a
point a8 Ty 5 & [7,], we see that a sufficiently small & [1,] does, in fact, guarantee
[the]requirec(i o')-convergence of the motions Yim) [¢] and Zm) [¢] for all T < <t
Tl — 1 (&)

From now on it will be convenient to represent the variation of the system parameters
with time ¢ on the plane {& {}. To prove the above statement it is enough to show that for
any e* >> 0 and 1® >> O we can choose a number A®> 0 such that for A < A° the con-
trol s [t]° keeps the motion {& [t], { [¢]} in the domain A, t.e. that {e[f] < e*,
CIt] > 0} for 0[1,,] - Tkl > 'q‘.

Let us consider the domain & > £°, § > 0 (see Fig. 1), where €° is a sufficiently
small number smaller than g* . Let us show that in this domain the quantity & [¢] can-
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not increase too rapidly. We assume first that in the
y/ domain H the control us [t] is formed in each interval
[tis Ti+1) not in accordance with the above rule, but
rather on the basis on Formulas similar to (3.11) and
(3.12) in whose right sides the argument T, has been
replaced by t. (Here the quantity & [7)] which is in-

volved in the definition of the quantity §[T] remains
constant for T = ¢ throughout the interval [Ty, Ty.y))-

DU

NN

N

7 The following equations are valid in the domain
% e > 0:15,3 0 .
% T Jw® 2 + 2 (w°, dw)] (3.13)
“ d o 8 )
08 g £ & =mlorp+ 5P 314

These equations follow directly from the definitions of the quantities { and £, Here w®[1] =
= w1, 7~ (T) is the solution of Problem B for x[¥], T=0{1,] - v; 8w = du — v —
—e® /T, Ou=usltl —pltl witl/CIt); 6v=w0lt] —w ]/ [t]. In
the domain § > € => € we have Su =0, so that

de e 6w P -

1 ITV P<re  (n=-const>) (3.15)
since [7] for € [7,] — T > ™ the quantity flw°) /¢ is uniformly bounded. Integrating
inequality (3.15), we find that throughout the time f, < ¢ < #g during which the trajec-
tory {& [£], § [t]} remains in the domain & >> 0, { > &, we have the inequality

et]<Ce[ty] e lt-tal (3.16)

Let us consider the function

) = (62— e + £2) " exp e [— X 22— 31
V(e §) = (& — ek -+ §3)"exp ﬁ[ G+ arct S ]J (3.17)
in the domain 0K £ < £, the datum levels V (&, {) = C> 0= const appear in the Fig. 1.
The total derivative d¥/d¢ of this function for ¢ = & {t], £ = [t] > O in the case
u == ua [{] is given by Expresasion

W___eV [P G=e) G—ep
= vl -t 8522 —o —HEET |
— iRl +E2 @, o)) (3.18)
and admits of the estimate
dvidt < W (3.19)

This estimate implies that throughout the time ¢, < ¢ « iy during which the trajece
tory {8 [t], & [t]} remains in the domain & > 0, 0 < § <C & we have the inequality
VISV ()¢ (3.20)
Since L <Cefor V> e and V=g for {=¢, the estimates (3.16) and (3,20) imply
that Inequality (8.16) applies throughout the time when ¢ > ¢, during which the trajec-
tory {8lt],{ [¢]} remains in the domain € >0, { >0
Now let us consider the variation of ¥ for 4 = ua [¢] once the trajectory {& [2],

§ [t]} has emerged onto the boundary {= 0 of the domein € > 0, § > 0. In this case
the derivative d{/dt is given by Eq.

(5] ISV T T oan
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where D and HIm] are certain matrices which can be computed in the usual way.

Furthermore,
de df |op
r i (3.22)
so that for the derivative dV/dt we obtain
vV [de dg VP
77*7['3?““—5]-—?'27 (3.23)

i.e. the function V does not increase for & >> O and {= 0 with the control & == u, [¢]
estimate (3.16) is therefore fulfilled for all times in the domain &£ > 0, § > 0. Hence, if
the quantity & [f,] is sufficiently small, then subsequently at all times ¢ < 4 lnl —
—n* < ¥ 1] — ™ the value ot & [t] will remain sufficiently small provided that
U = Ua [t] .

It now remains for us to estimate the effect of converting from the control U4z [t] to
the control 1, [£]° under investigation here. Without presenting detailed estimates for
Eqs. {1.1), (3.13), (3.14), (3.21) and (3.22), which can be obtained without much difficulty
in the domain & > £° by the usual procedure for converting from a differential to a finite
difference scheme of variable substitution, we shall merely state the final result: the devi-
ation of the trajectories under investigation for ©u = Uy (2] per step [Tk, Tku) is on the
order of 0 (A), where o{A) is an infinitesimal of order higher than A (for the entire time
during which the representing point {€,0} remains in the domain &°>> €°); this estimate
o(A) is uniform for each fixed €° >> 0. Estimate (3.16) then implies the required small-
ness of the quantity & {tk], since & [1,] = 0.

Thus, for T = T, the control U == Uy [t]° does, in fact, insure o ~convergence of
the motions Jym] [t] and Z[m] [tl tor t << 1y + Ty [1,], provided the quantity A>
> 0 is sufficiently small. Similarly, since ¢ [tx:] is small for small A for any intermediate
value T == Tye, k* > 0 (by virtue of what was proved above), we see that the control
us [¢]° for t > Ty* guarantees o ~convergence of the motions  Y[my {f] and z{m; [¢]
for t< Tg* + To [‘['kc].

On the other hand, taking v* [{] = p [¢] u*[tl/ v [t] we see that for any u*[¢] for

t > Tx* arbitrary 0 -convergence cannot be guaranteed for ¢ < T + Ty lTk‘] —a,
where @ = const > 0, This implies the optimality of the control %4 [£]° for problem (3.1)
to (3.3).

4. The difficulties considered in the present paper are immediately removed if we as-

sume 1, 8 and 9] the possibility of constructing the control u{t] in the form
ultl=uly ], 2 it plel viel v )] 4.9

since here in the critical situation where yt = v it is sufficient, for example, to set uls] =
= v{¢l. If such direct discrimination of the motion z{¢] is undesirable,then the quantity
v{#] can be allowed for indirectly in computing the control u . This can be done by again
introducing some aftereffect in the control law u. Takirng y, (3.1) as our criterion of the
pursuit result, we construct Eq.

Uy (tl=u, (G yled 2], pivd vil 2l b vin e (1, KE<Tgy) (4.2
in the following way. From the values of y [7,], 4 [T}, z [74_;] and v [1,_, | we deter-
mine the instant of absorption 9° {1}, T,_,] when the attainability domeain G, [1,_,,
g v} vt ), & — A] first lies inside the domain G, [7}, ¥ [v,], 1 [t;], 8]. We
denote by £ [t, 1,; O] the quantity

e [T, T,: 1 = max, min, [y — z| 4.3)
fory from G [7, y [], p 7], 0] and 2 from G, [7,, 2z (7, ], v [7,], @ — A]. Clearly, from
the chosen §° [1,, Ty, ] we have gt . _,, € [7, 7, ,1] = 0.
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We now define the control u, [f] (4.2) on the interval [t,, 7, ,,] as the optimal program
control which guarantees fulfillment of the condition
€ [‘kﬂ,' Tk: g° (1")" Tx_lll =0 44)

i.e. keeps the domain

Gy [vgy 5 1%, v [0, 8° [, 7,1 — A}
inside the domain

Gy [t ¥ [Ty o [0 0 [0 Tl
and maximizes the distance between the boundaries of these domains in some convenient
metric. Clearly, it is always possible to guarantee fulfillment of Eq. (4.4) in our case. In

fact, this condition already guarantees, for example, an extremal control u*(t) = uﬁ[t] aimed
at the point of osculation of the boundaries of the domains

G}_ {ts y [‘L F' {t}s ﬁo [Tk» 1}‘_1}}
Gyt — A, z(t— A), v[t—Al+B (), 9%, 1,411 B =0
as long as
pltl>vIit— A4+ B(@®) or u*{t)= v (t— A),

where u[t] = vt = Al + Bl). But Eq. (4.4) guarantees fulfillment of the inequality 8° [y,
1< #° [x,, "k—l] so0 that we can continue our construction of the control u, [] in the
same way for T, <t < T,,4 €tc. The method of constructing the control u, [f] just
described insures convergence of the point y m][t] and z[m][t—-A] at the instant ¢ <{9°
[t_3. %] , so that for a sufficiently small A> 0 it also insures the required convergence of
the points  ¥pm) {t] and Z(m) [e].

This regularization applies not ouly to linear homotypic objects, but also in the very
general case where successful completion of the pursuit process is possible with the con«
trol u{¢] taken in the form (4.1) (although the problem of the minimax character of the con=
trol 4 generally does not require investigation), The conditions which guarantee encounter
by means of control (4.1) are known for a broad class of problems with restrictions impoaed
on the instantaneous values of the controlling forces {e.g. see [1, 8 and 9]). Such conditions
can also be derived for problems with integral restrictions on the controls. We note, in par-
ticular, that fulfillment of the relation

3 +3
max, ming, {—5-‘—3 [t41,t47.0° [r]]}m == 0 (4.5)

at each instant ¢ = < of pursuit at all points of the phase space where the realizations of
the quantities {y [t], = (7], p [T], v [*]} might occur is clearly sufficient for the success-
ful completion ot pursuit under the condition (4.4).

From Egs. (4.3) and (4.4) we infer immediately that this condition is fulfilled in a nelf-
evident way in our case. In the general case more or less effective sufficient conditions
which insure convergence of the motions  ¥qn,; (t] and 2(m] [t] snd are implied by the
conditions {4.5) can be constructed in terms of the planes tangent to the attainability do-
meins G, {7, y [v], p {7], O]} and G, lx, z [1], v [7], ©°I%]]; this reduces to the in-
vestigation of functions similer to the quantity e (4.3). The regularization described in the
present Section requires theoretical and experimental study of the stability of the corres-
ponding computational scheme, Sach s study is important in view of the involvement in the
scheme of the close guantities 57[1.',‘], 5 [t.,] and ¥ [1,]v[1,]. It appears that a0
far there has been no sufficiently complete inquiry into this problem.



1.

3.

3.

5.

6.

A problem on the encounter of motions in games 11

BIBLIOG RAPHY

Pontriagin, L.S., On the theory of differential gamea. Usp. Mat. Nauk Vol.-21, No. 4
{130, 1966.

Isaacs, R., Differential Games, New York, 1965.

Krasovskii, N.N., Repin, Iu.M. and Tret’iakov, V.E., Some games situations in the
theory of controlled systems. Izv. Akad. Nauk SSSR. Tekhn, Kibemetika No. 4, 1965.

Krasovskii, N.N. and Tret’iakov, V.E., On the encounter-of-motions problem. Dokl.
Akad. Naok SSSR Vol. 173, No. 2, 1967.

Krasovskii, N.N., On the problem of purauit in the case of linear monotype objects. PMM
Vol. 30, No. 2, 1966.

Krasovskii, N.N., On the encounter-of-motions problem in games theory. Dokl. Akad.
Nauk SSSR Vol. 173, No. 3, 1967.

Subbotin, A.L, On the problem of the game«interception of motions. PMM Vol. 31, No.
5, 1967.

Mishchenko, E.F. and Pontriagin, L.S., Linesr differential games. Dokl. Akad. Nauk
SSSR Vol. 174, No. 1, 1967.

Pontriagin, L.S., Linear differential games. 1, Dokl Akad. Nauk SSSR Vol, 174, No. 6,
1967.

Translated by: A.Y.



