# REGULARIZING A PROBLEM ON THE ENCOUNTER OF MOTIONS IN GAMES THEORY 

PMM Vol. 32, No. 1, 1968, pp. 3.14

N.N. KRASOVSKII and V.E. TRET'IAKOV<br>(Sverdlovak)

(Received September 25, 1967)

The irregular character of the problem [1 to 4] of the minimax of the time-to-encounter of two linear homotypic objects is discussed. The problem is regularized by introducing a discrete scheme of variation of the predicted instant of encounter. A strategy is constructed which guarantees a result which is in a certain sense optimal for the pursuer to within m arbitrarily small $e>0$.

1. Let us supposed that the motions of the pursuing and pursued objects, $y(t)$ and $s(t)$ respectively, are described by the linear differential Eqs.

$$
\begin{align*}
& d y / d t=A y+B u  \tag{1.1}\\
& d z / d t=A z+B v \tag{1.2}
\end{align*}
$$

Here $y(t)=\left\{y_{1}(t), \ldots, y_{n}(t)\right\}$ and $z(t)=\left\{z_{1}(t), \ldots, x_{n}(t)\right\}$ are the phase coordinate vectors of the controlled objects; $u$ and $v$ are the r-dimension al vectors of the controlling forces; $A$ and $B$ are constant matrices of the corresponding dimentionalities. Let us isolate certain phase coordinates $y_{t_{k}}$ and $z_{i_{k}}(k=1, \ldots, m \leqslant n)$ whose coincidence at the instant of mee$\operatorname{ting} t=\boldsymbol{\theta}$ is the pursuit goal. Without limiting generality we can assume that $i_{k}=k$. We shall consider the chosen coordinates as the controlled coordinates [5]. From now on it will be convenient to consider the sets of coordinates $\left\{y_{i}\right\}=y_{[m]} ;\left\{x_{i}\right\}=x_{[m]}(i=1, \ldots, m)$ as vectors $\left\{q_{i}\right\}=q(i=1, \ldots, m)$ in the $m$-dimensional space $Q$.

Let us investigate the problem [4] of the minimax of the time-to-encounter of the objects over a portion of the isolated coordinates as a differential positional pursuit game [1 to 3] under the condition that the control resources $u(t)$ and $\nu(t)$ available for use for $t \geqslant T$ are at each given instant $\tau$ restricted by integral conditions of the form

$$
\begin{equation*}
\int_{\tau}^{\infty}\|u(t)\|^{2} d t \leqslant \mu^{2}(\tau), \quad \int_{\tau}^{\infty}\|v(t)\|^{2} d t \leqslant v^{2}(\tau) \tag{1.3}
\end{equation*}
$$

From the conditions of the problem the control $u$ at each instant $\tau$ must be fomed in accordance with the feedback principle on the basis of measurements of the quantities $y(\tau)$ $z(\tau), \mu(\tau)$, and $\nu(\tau)$, i.e. in the form

$$
\begin{equation*}
u[\tau]=u[y[\tau], z[\tau], \mu[\tau], v[\tau]] \tag{1.4}
\end{equation*}
$$

The puraued player is amenable to both the program control $v=v(t), t \geqslant T$, and to the feedback control(*)

[^0]\[

$$
\begin{equation*}
v[\tau]=v[y[\tau], z[\tau], \mu[\tau], v[\tau]] \tag{1.5}
\end{equation*}
$$

\]

We must emphasise that the pursuer is not notified of the controls $v=v[t]$ or $v=v(t)$ chosen by the parsued player for instants $t \geqslant \tau$. The strategies $u$ and $v$, i.e. the sets of functions of the form (1.4) and (1.5), will be considered permissible provided that the following condition are fulfilled during their realizations $u=u[t], v=v[t]$ or $v=v(t)$ : a) Imiting conditiona (1.3) are not violated; b) Eqs. (1.1) and (1.2) do no lose meaning.

Thus, the problem consists in finding from among the permissible strategies optimal strategies $u^{\circ}=u^{\circ}[y, x, \mu, \nu]$ and $\nu^{\circ}=\nu^{\circ}[\gamma, z, \mu, \nu]$ auch that the following condition is fulfilled for all initial values $y\left(t_{0}\right), z\left(t_{0}\right), \mu\left(t_{0}\right)$, and $\nu\left(t_{0}\right)$ (from the specified range of their variation):

$$
\begin{equation*}
T_{u^{\circ}, v^{\circ}}=\min _{u} \max _{v} T_{u, v} \tag{1.6}
\end{equation*}
$$

where $T_{u, v}=\hat{\theta}_{u, v}-\tau$ is the time-to-encounter of the motions.
The game problem on the encounter of two controlled motions is solved in [5] for $m=n$. In this case problem ( 1.6 ) is solved by the external aiming rule which consists in the aiming at each instant $t=$ Tof the motions $y(t)$ and $z(t)$ towards the point $q^{\circ}[\tau]$ of osculation of the boundaries of the attainability domains $G_{1}\left[\tau, y[\tau], \mu[\tau], \theta_{0}\right]$ and $G_{2}\left[\tau, z[\tau], \nu[\tau], \hat{\theta}_{0}\right]$ constructed for the instant of absorption $\theta=\hat{\theta}_{0}$ of the process $z(t)$ by the process $y(t)$ (e.g. see [3], pp. 7 and 8). If the pursuer constructs his own strategy on the basis of the extremal aiming rule, then for any permissible $v$ throughout the time-to-encounter the boundaries of the attainability domains $G_{1}\left[\tau, y[\tau], \mu[\tau], \vartheta_{0}\right]$ and $G_{2}\left[\tau, z[\tau], \nu[\tau], \theta_{0}\right]$ osculate at a single point, and pursuit is successfully accomplished at $t \leqslant \mathcal{J}_{0}$ provides that the domain $G_{2}$ lay inside the domain $G_{1}$ at the initial instant of pursuit.

The problem of the minimax of the time-to-en counter of the motions $y_{[m]}(t)(1.1)$ and $z_{[m]}$ (t) (1.2) is more complicated in the case where $m<n$. Here, as with $m=n$, we can construcl the extremal strategies

$$
\begin{align*}
& u_{0}[\tau]=\frac{\mu[\tau]}{\mu[\tau]-v[\tau]} w_{x[\tau], \times[\tau]}^{0}(\tau)  \tag{1.7}\\
& v_{0}[\tau]=\frac{v[\tau]}{\mu[\tau]-v[\tau]} w_{x[\tau], x[\tau]}^{0}(\tau) \tag{1.8}
\end{align*}
$$

where $w_{x[t], x[r]}^{\circ}(t)\left(T \leqslant t \leqslant \theta^{\circ}\right)$ is the optimal program control for the ancillary problem on the trans fer of the system

$$
\begin{equation*}
\dot{x}=A x+B w \tag{1.9}
\end{equation*}
$$

from the state

$$
x=x[\tau]=y[\tau]-z[\tau]
$$

to the position corresponding to

$$
y[m]\left(\theta^{\circ}\right)-z_{[m]}\left(0^{\circ}\right)=x_{[m]}\left(v^{\circ}\right)=0
$$

under the restriction

$$
\begin{equation*}
\left[\int_{\tau}^{\infty}\|w(t)\|^{2} d t\right]^{1 / 2} \leqslant \mu[\tau]-v[\tau]=x[\tau] \tag{1.10}
\end{equation*}
$$

and under the condition

$$
\begin{equation*}
T_{0}=\mathcal{\vartheta}^{\circ}-\tau=\min _{w} T_{w} \tag{1.11}
\end{equation*}
$$

This ancillary problem will be called Problem A. In addition to Problem A we shall later need ancillary Problem $B$ on the transfer of system (1.9) from the state $x[T]$ to the position $x_{[m \eta]}(Q)=0$ in the apecified time $T=\theta-T$ under the condition

$$
\begin{equation*}
\left[\int_{-z}^{\theta}\|w(t)\|^{2} d t\right]^{t}=\min \tag{1.12}
\end{equation*}
$$

Let us introduce the notation

$$
\begin{equation*}
\zeta(x[\tau], \tau, \theta)=\left[\int_{\tau}^{\theta}\left\|w_{x[\tau], \tau}^{\bullet}(t)\right\|^{2} d t\right]^{\tau / x} \tag{1.13}
\end{equation*}
$$

where $w^{\circ}{ }_{x[\tau]} T^{(t)}$ is the solution of problem B. It then turns out that the instant $t=\theta^{\circ}$ of arrival of the motion $x_{[m]}(t)$ at the position $x_{[m]}=0$ in problem A coincides with the instant of absorption $\bigotimes_{0}$ which is the smallest positive root of Eq.

$$
\begin{equation*}
\zeta(x[\tau], \tau, \vartheta)=\mu[\tau]-v[\tau] \equiv x[\tau] \tag{1.14}
\end{equation*}
$$

If the players are guided by the extremal strategies $\mu_{0}(1.7)$ and $v_{0}(1.8)$ then the meeting occurs at the instant of absorption $t=\boldsymbol{\theta}_{0}$, just as in the case $m=n$. But now, in contrast to the case $m=n$, the extremal strategy $u_{0}$ (1.7) does not guarantee for all permissible $v$ the uniqueness of the point of osculation $q^{\circ}[\tau]$ throughout the time-to-encounter $T$.

This statement can be verified, for example, in the case of the motions

$$
\begin{array}{llll}
\frac{d y_{1}}{d t}=y_{3}, & \frac{d y_{2}}{d t}=u_{1}, & \frac{d y_{3}}{d t}=y_{4}, & \frac{d y_{4}}{d t}=u_{3} \\
\frac{d z_{1}}{d t}=z_{2}, & \frac{d z_{3}}{d t}=v_{1}, & \frac{d z_{3}}{d t}=z_{4}, & \frac{d z_{4}}{d t}=v_{2} \tag{1.16}
\end{array}
$$

where it is necessary to effect a meeting only in the coordinates $y_{1}, z_{1}$ and $y_{3}, z_{3}$. The extremal control $u_{0}[\tau]$ (1.7) in this case is given by

$$
\begin{equation*}
u_{0}=\left\{-\frac{3}{T_{0^{2}}} \frac{\mu}{\mu-v}\left(x_{1}+x_{2} T_{0}\right),-\frac{3}{T_{0}^{2}} \frac{\mu}{\mu-v}\left(x_{3}+x_{6} T_{0}\right)\right\} \tag{1.17}
\end{equation*}
$$

where the quantity $T_{0}$ is the smallest positive root of Eq. (1.14),

$$
\begin{equation*}
\left\{\frac{\left.3\left[\left(x_{1}+x_{2} T\right)^{2}+\left(x_{8}+x_{4} T\right)^{2}\right]\right\}^{1 / 2}}{T^{3}}\right\}^{\mu-v} \tag{1.18}
\end{equation*}
$$

If the pursuer makes use of the control $u_{0}$ (1.17) and if the pursued player chooses the control $v(t)=\psi=$ const, where $\|\psi\|$ is a sufficiently small quantity, then there exist initial data $y\left(t_{n}\right), z\left(t_{0}\right), \mu\left(t_{0}\right)$ and $\nu\left(t_{0}\right)$ such that the domains $G_{1}$ and $G_{2}$ merge at some instant $t=\tau_{*}$ prior to the coincidence of $y_{1}(t), y_{3}(t)$ and $z_{1}(t), z_{3}(t)$. But at the instant of merging of the attainability domains, which in the general case of system (1.1), (1.2) under restrictions (1.3) constitate congruent and similarly oriented ellipsoids, the number of points of osculation $q^{\circ}$ of their boundaries becomes infinitely large and the extremal aiming rule is violated. At such instants the pursued player has the opportunity of escaping from the pursuer's domain of attainability.

Thus, for $m<n$ the choice of the control $u[\tau]$ on the basis of the extremal aiming rule does not guarantee meeting of the motions $y_{[m]}[t]$ and $z_{[m]}[t]$ in a time $\tau \leqslant t \leqslant \vartheta_{0}$. It turns out, furthermore [4], that for $m<n$ it is generally impossible to construct a control $u=u^{*}[y[\tau], z[\tau], \mu[\tau], \nu[\tau]]$ which would ensure meeting within a time $t \leqslant \hat{v}_{0}[\tau]$. These difficulties for the case $m<n$ can be overcome, however, through suitable regularization of the problem.
2. Our earlier paper [4] contains a regularization of the above problem based on the introduction between the boundaries of the domains $G_{1}$ and $G_{2}$ of the intervening layer afforded by an additional margin $\varepsilon(\tau)>0$ in the control resource $\mu(\tau)$.

Here we present another regularization of the problem based on a discrete control scheme which allows us to bring the point $\gamma_{[m]}[t]$ into an arbitrarily amall neighborhood of the point $z_{[m]}\left(\theta_{0}\right)$.

Let us assume that at the initial instant of parsuit $t=t_{0}$ the domain $G_{2}\left[t_{0}, z\left(t_{0}\right), \nu\left(t_{0}\right)\right.$, $\left.\vartheta_{0}\right]$ lay inside the domain $G_{1}\left[t_{0}, \boldsymbol{y}\left(t_{0}\right), \mu\left(t_{0}\right), \Theta_{0}\right]$ and that their boundaries osculated at the single point $q^{\circ}\left[t_{0}\right]$. The pursuer can then make use of extremal control (1.7), at least until the instant $t=\tau_{*}$ at which the domains

$$
\left.G_{s}\left[\tau_{*}, z\left[\tau_{*}\right], v\left[\tau_{*}\right], \theta_{0}\right] ; G_{1}\left[\tau_{*}, y\left[\tau_{*}\right], \mu \tau_{*}\right], \theta_{0}\right]
$$

merge. We introduce the notation

$$
y\left[\tau_{*}\right]=y_{*}, \quad z\left[\tau_{*}\right]=z_{*}, \mu\left[\tau_{*}\right]=\mu_{*}, \quad v\left[\tau_{*}\right]=v_{*}
$$

The Eq. $x_{*}\left[\tau_{*}\right]=x_{*}=\mu_{*}-\nu_{*}=0$ is valid at the instant $t=\tau_{*}$.
At the instant $t=\tau_{*}$, i.e. at the point $y_{*}, x_{*}, K_{*}=0$, the most natural course is to choose the control $u\left[\tau_{*}\right]$ from the randomization condition [2] for extremal strategies in the case of an infinite number of extremal aiming points. The pursuer can be aimed at any of these points at each instant $t=T_{*}$ with equal probability of success. But by virtue of the symmetry of the attainability domain each extremal control is associated with an extremal control of equal in norm but opposite aign. Hence, the average value of all the extremal strategies at the instant of merging of the attainability domains is equal to zero. Hence, it is most natural (*) to set $u\left[\tau_{*}\right]=u_{0}\left[\gamma_{*}, x_{*}, \mu_{*}, \nu_{*}\right]=0$.

However, at subsequent instants $t>\tau_{*}$ the domains $G_{1}$ and $G_{2}$ are, as a rule (**), no longer merged, so that it becomes necessary to choose the control $u[y[\tau], z[\tau], \mu[\tau]$, $\nu[\tau]]$ from other considerations, e.g. by once again setting $u=u_{0}$ (1.7). This renders the right sides of differential Eqs. (1.1) irregular; they turn out to have a discontinuity at the point $x_{*}=y_{*}-z_{*}, x_{*}=\mu_{*}-\nu_{*}=0$. It is therefore advisable to convert to a discrete control aystem. Let us choose a small $\Delta \tau>0$ and set $u(t) \equiv 0$ for the time $\tau_{*} \leqslant t<\tau_{*}+\Delta \tau$. It is easy to ahow that if the domain $G_{2}$ remains inside the domain $G_{1}$ throughout the time $t>\tau_{*}$, then the encounter will occurnot later than at the instant $t=\theta_{0}\left[\tau_{*}\right]$. The contrary case is unfavorable to the pursuer.

Let us suppose that the pursued player has chosen a control $\nu(t)\left(\tau_{*} \leqslant t<\tau_{*}+\Lambda \tau\right)$ such that a portion of the domain

$$
G_{2}\left[\tau_{*}+\Delta \tau, z\left[\tau_{*}+\Delta \tau\right], v\left[\tau_{*}+\Delta \tau\right], \theta_{0}\left[\tau_{*}\right]\right]
$$

lies outside the boundaries of the domain

$$
G_{1}\left[\tau_{*}+\Delta \tau, y\left[\tau_{*}+\Delta \tau\right], \mu\left[\tau_{*}+\Delta \tau\right], \vartheta_{0}\left[\tau_{*}\right]\right.
$$

In accordance with Eq. (1.14) a new instant of absorption $\vartheta_{0}\left[\tau_{*}+\Delta \tau\right]$ occurs at the inatant $t=\tau_{*}+\Delta \tau_{\text {; }}$ and the domain $G_{2}\left[\tau_{*}+\Delta \tau_{,}\left[\tau_{*}+\Delta \tau\right], \nu\left[\tau_{*}+\Delta \tau\right], \hat{v}_{0}\left[\tau_{*}+\Delta \tau\right]\right]$ lies inside the domain $G_{1}\left[\tau_{*}+\Delta \tau_{,} y\left[\tau_{*}+\Delta \tau\right], \mu\left[\tau_{*}+\Delta \tau\right], \theta_{0}\left[\tau_{*}+\Delta \tau\right]\right]$, touching it at the aingle point $q^{*}$. It is then possible to make use once again of extremal strategy (1.7), aiming towards the point $q^{*}$ until the domains $G_{2}$ and $C_{1}$ merge once again.

It is reasonable to hope that by cyclically altemating the extremal aiming rule with a control conatructed in a short time $\Delta \tau>0$ on the basis of the randomization condition we might obtain a regular strategy (an $R$-strategy) which guarantees encounter at an instant arbitrarily close to the instant of absorption (as $\Delta \tau \rightarrow 0$ ). Unfortunately, this simple technique of choosing the control $u$ does not yield the desired result.

Let ue illuatrate this for the case of motions (1.15) and (1.16). Let us assume that the ingtant $t=\tau_{*}=0$ when the domains $G_{1}$ and $G_{2}$ merge has arrived, and that the position $y\left[\tau_{*}\right]=\{-\alpha, 1+\beta, 0,0\}, z\left[\tau_{*}\right]=\{0, R, 0,0\}$ was attained at this instant; in addition, we aname that $\mu\left[\tau_{*}\right]=\nu\left[\tau_{*}\right]=1, \theta_{0}\left[\tau_{*}\right]=\alpha>0$. Stipulating that $u(t)=\{0,0\}, v(t)=\{\psi$, 00 daring the time $\Delta \tau$, we can write ont Eq. (1.18) for determining the instant of absorption $\theta_{0}\left[T_{2}+\Delta \tau\right]$,
$\left[1-\sqrt{1-\psi^{2} \Delta \tau}\right]^{2}(\theta-\Delta \tau)^{2}-3\left[\left(\Delta \tau-\psi \frac{\Delta \tau^{2}}{2}-\alpha\right)+(1-\psi \Delta \tau)(\theta-\Delta \tau)\right]^{2}=0$
It is essy to ase that for amall $\psi>0$ the amallest positive root of Eq. (2.1) which is
*) The control $u\left[\tau_{v}\right]$ chosen from the condition $\min _{u} \max _{v} d e / d t$ is similar. Here $\varepsilon$ is an entimate of the pomaible overhang of the domain $G_{2}$ beyond the domain $G_{2}$ (in some convenient metric) (aee below Section 3)
**) The domaine $G$ and $G_{2}$ will certainly drift apart provided that the controls $u$ and $v$ do not vanish aimultmeously for $s>\tau_{*}$.
equal to $\theta_{0}\left[\tau_{*}+\Delta \tau\right]$ is arbitrarily large for a anficiently amall $\Delta \tau$. Hence, the control law just described generally cannot inaure encoumter at inatants close to the instant of absorption $\hat{f}_{\rho}\left[\tau_{*}\right]$. We cman also verify that this technique does not guarantee e-convergence for $t \leqslant \theta_{0}[\tau *$.

Let un attempt to conatruct the $R$-atrategy in a different way. Let us hold the namber $\theta_{0}\left[\tau_{*}\right]=\theta_{*}$ fixed and asaume once again that for $u(t) \equiv 0\left(\tau_{*} \leqslant t<\tau_{*}+\Delta \tau\right)$ a portion of the domain $G_{2}\left[\tau_{*}+\Delta \tau, z\left[\tau_{*}+\Delta \tau\right], \nu\left[\tau_{*}+\Delta \tau\right], \theta_{*}\right]$ has exceeded the boundary of the domain $G_{1}\left[\tau_{*}+\Delta \tau, y\left[\tau_{*}+\Delta \tau\right], \mu\left[\tau_{*}+\Delta \tau\right], \theta_{*}\right]$. Let $e[\tau]$ be the amallest quantity necessary for the dom ain $G_{2}\left[\tau, z[\tau], \nu[\tau], \theta_{*}\right]$ to lie inside the domain $G_{1}[\tau, y[\tau], \mu[\tau]$ $\left.+\varepsilon[\tau], \theta_{*}\right]$ for instants $\tau>\tau_{*}$. Hence, $\varepsilon[\tau]$ can be detemined from the condition

$$
\begin{equation*}
\mathrm{E}[\tau]=\zeta\left(x[\tau], \tau, \theta_{*}\right)-x[\tau] \tag{2.2}
\end{equation*}
$$

where $\zeta$ can be computed from Formula (1.13). Once the time $\Delta \tau$ has elapsed we choose the pursuer's extremal control in the form

$$
\begin{equation*}
u_{z}[\tau]=\frac{\mu[\tau]}{x[\tau]+8[\tau]} w_{x[\tau], \zeta[\tau]}^{*}(\tau) \tag{2.3}
\end{equation*}
$$

where $w_{x[\tau], \gamma[\tau]}^{\circ}(t)$ is the solution of problem $A$ under the condition

$$
\begin{equation*}
\left[\int_{\tau}^{\infty}\|w(t)\|^{2} d t\right]^{1 / s} \leqslant x[\tau]+\varepsilon[\tau]=\zeta[\tau] \tag{2.4}
\end{equation*}
$$

Let the pursuer continue to make ase of the control $u_{z}[\tau]$ (2.3) until the domains $G_{1}$ $\left[\tau, y[\tau], \mu[\tau]+\varepsilon[\tau], \hat{\theta}_{*}\right]$ and $G_{2}\left[\tau, z[\tau], v[\tau], \hat{\theta}_{*}\right]$ merge, i.e. until $\zeta[\tau]$ vanishes. After this for the time $\Delta \tau$ we once again set $u(t) \equiv 0$, etc. If the control technique just described did, in fact, guarantee arbitrary smallness of the quantity $e\left(\theta_{*}\right)$ as $\Delta \tau \rightarrow 0$ for all permiasible $v$, then by an instant $t \leqslant \boldsymbol{\theta}_{*}$ the motion $y_{[m]}[t]$ would enter an arbitraxily small neighborhood of the point $z_{[m]}\left(\vartheta_{*}\right)$, which would signify satisfactory solution of the problem. This does not happen, howe ver.

Indeed, from the definitions of the quantities $\zeta$ and $\varepsilon$ (see (3.13), (3.14), and (3.21) below), we find that for $\zeta=0$

$$
\begin{equation*}
\frac{d \zeta}{d \varepsilon}=\frac{d \zeta / d t}{d \zeta / d t-\|v\|^{3} / 2 v} \tag{2.5}
\end{equation*}
$$

while for small $\zeta>0$ we have

$$
\begin{equation*}
\frac{d \zeta}{d \varepsilon}=2 \frac{\varepsilon\left\|w^{\circ}\right\|^{2} \zeta^{-2}+\left(w^{\circ} / \zeta, \delta v\right)}{\varepsilon\left\|w^{\circ}\right\|^{2} \zeta^{-2}-\|\delta v\|^{-} v^{-1}}+O(\zeta) \tag{2.6}
\end{equation*}
$$

where $\delta v=v-\nu w \%$ and where $O(\zeta)$ is an infinitesimal of order $\zeta$. The quantity $d \zeta / d t$ in (2.5) is strictly positive if $v \neq 0$ and vanishes for $v=0$. If $v=\psi=$ const, where the quantity $\|\psi\|$ is sufficiently small, then $d \zeta / d e(2.5)$ is arbitrarily close to unity. However, for $\zeta>0$ and $\varepsilon<\nu$ we soe that, first, $d \zeta / d t<0$, and second, that the quantity $d \zeta / d e(2.6)$ is close to two. Hence, for such a $v$ (however small our $\Delta \tau$ ) the function $\varepsilon(t)$ can increase proportionally to time with a proportionality coefficient which does not tend to zero as $\Delta \tau \rightarrow$ $\rightarrow 0$. This means that $\varepsilon(t)$ cannot be made smaller than a preselected positive number by the instent $t=\theta_{*}$. Hence, as $\Delta \tau \rightarrow 0$ this method of constructing the control $u$ for $v=\psi=$ const gives rise to a characteristic slippage state which produces a considerable increase in $e$ (t).
3. In this section we shall develop a solution of the problem which will enable us to overcome the difficulties described above. The modification of the problem about to be discuseed is beaed on a discrete scheme of variation of the control $u$ which is accompanied, as towards the end of Section 2, by braking of the quantity $\boldsymbol{\theta}_{0}[\tau]$. However, we shall now
make use of a moothed extremal control. This will enable us to circumvent the difficulties which we confrontedin Section 2. Let us now describe the proposed method of constructing the control.

Let $\left\{\tau_{k}\right\}(k=0,1, \ldots)$ be a sequence of instants of time; let $\tau_{k+1}-\tau_{k}=\Delta$. Let the symbol $u_{\Delta}[t]$ donote the control $u_{\text {, }}$ which changes only at the instants $t=\tau_{k}$. The value of $u_{A}[t]$ in the interval $\left[\tau_{k}, \tau_{k+1}\right.$ ) is then determined only by the quantities realized by the instant $t=\tau_{\mathbf{k}}$. In choosing the control $u$ in this way we take the quantity

$$
\begin{equation*}
\gamma_{u}=\sup _{\sigma}\left\{\lim _{\Delta \rightarrow 0} \sup \left[\sup _{v} T_{u_{\Delta}, v}^{\sigma}\right]\right\}(\sigma>0) \tag{3.1}
\end{equation*}
$$

as our criterion of the pursuit results.
Here the number $T_{u_{\Delta v}}^{*}$ denotes the instant $t=\tau+T_{u_{\Delta}, v}^{a}$ at which the condition

$$
\begin{equation*}
\left\|y_{[m]}[\tau+T]-z_{[m]}[\tau+T]\right\| \leqslant \sigma \tag{3.2}
\end{equation*}
$$

is falfilled for the first time for the chosen control $u(t)$ and the chosen law for constructing the control $u_{\dot{\Delta}}[t]$, and for the stipulated initial state $y[\tau], z[\tau], \mu[\tau], v[\tau]$. The problem now consists in choosing the optimal control $u^{\circ}[t]$ which gives the minimum

$$
\begin{equation*}
T^{\circ}=\gamma_{u \unlhd 口}^{\circ}=\min _{u} \gamma_{u} \tag{3.3}
\end{equation*}
$$

for any initial conditions $y[\tau], z[\tau], \mu[\tau], v[\tau]$ from the domain of their possible variation. As our argaments which determine the extremal control $u_{\Delta}[t]^{\circ}$ in the intervals $\left[\tau_{k}, \tau_{k+1}\right)$ we take the values of the variables $y\left[\tau_{k}\right], z\left[\tau_{k}\right], \mu\left[\tau_{k}\right], v\left[\tau_{k}\right]$ and of the ancillary variable $\theta\left[\tau_{k}\right]$ whose meaning will be explained below. Thus, we construct the control $u_{\Delta}[t]^{\circ}$ in the form

$$
\begin{equation*}
u_{\Delta}[t]^{\circ}=u\left[y\left[\tau_{k}\right], z\left[\tau_{k}\right], \mu\left[\tau_{k}\right], v\left[\tau_{k}\right], \theta\left[\tau_{k-1}\right]\right]^{\circ}\left(\tau_{k} \leqslant t<\tau_{k+1}\right) \tag{3.4}
\end{equation*}
$$

The algorithm which determines the right side of (3.4) and the sequence of values $\vartheta\left[\tau_{k}\right]$ is as follows. Let pursuit begin at $t=\tau_{0}$. From now on we shall always assume that the inequality $\mu\left[\tau_{0}\right] \geqslant v\left[\tau_{0}\right]$ is fulfilled at $t=\tau_{0}$ and that Problem A has the finite solution $T_{0}\left[\tau_{0}\right]$ for $t=\tau_{0}, x\left[\tau_{0}\right]=y\left[\tau_{0}\right]-z\left[\tau_{0}\right], x\left[\tau_{0}\right]=\mu\left[\tau_{0}\right]-$ $-v\left[\tau_{0}\right]$.

Let us set $\hat{\theta}\left[\tau_{-1}\right]=\theta\left[\tau_{0}\right]=\tau_{0}+T_{0}\left[\tau_{0}\right]$. The control $u_{\Delta}[t]^{\circ}$ in Formula (3.4) is defined by the following two equations of differing form:

$$
\text { if } \begin{align*}
& x\left[\tau_{0}\right]>0 \\
& \qquad u_{\Delta}[t]^{\circ}=\frac{\mu\left[\tau_{0}\right]}{x\left[\tau_{0}\right]} w_{x\left[\tau_{0}\right], \times\left[\tau_{0}\right]}^{\bullet}\left(\tau_{0}\right) \quad\left(\tau_{0} \leqslant t<\tau_{1}\right) \tag{3.5}
\end{align*}
$$

$$
\text { if } x\left[\tau_{0}\right]=0
$$

$$
\begin{equation*}
u_{\Delta}[t]^{\circ} \equiv 0 \quad\left(\tau_{0} \leqslant t<\tau_{1}\right) \tag{3.6}
\end{equation*}
$$

Now let $\tau=\tau_{k}>\tau_{0}$. We shall determine the quantities $\vartheta\left[\tau_{j}\right]$ recurrently; thus, we asaume that $\theta\left[\tau_{k-1}\right]$ is known at the instant $\tau=\tau_{k}$. If the quantity $\chi\left[\tau_{k}\right]=\mu\left[\tau_{k}\right]$ $-v\left[\tau_{k}\right]>0$ was realized at the inatant $\tau=\tau_{k}$, then we once again solve problem $A$ for the realized $\tau=\tau_{k}, x\left[\tau_{k}\right]=y\left[\tau_{k}\right]-z\left[\tau_{k}\right], x=x\left[\tau_{k}\right]$.

Let us aseame firtit that solution of this problem yields

$$
\begin{equation*}
T_{0}\left[\tau_{k}\right] \leqslant \theta\left[\tau_{k-1}\right]-\tau_{k} \tag{3.7}
\end{equation*}
$$

We can then aet $\theta\left[\tau_{k}\right]=\tau_{k}+T_{0}\left[\tau_{k}\right]$ and

$$
\begin{align*}
& \text { If } x\left[\tau_{k}\right]>0 \\
& \quad u_{\Delta}[t]^{\circ}=\frac{\mu\left[\tau_{k}\right]}{x\left[\tau_{k}\right]} w_{x\left[\tau_{k}\right] \times\left[\tau_{k}\right]}^{\circ}\left(\tau_{k}\right) \quad\left(\tau_{k} \leqslant t<\tau_{k+1}\right) \tag{3.8}
\end{align*}
$$

$$
\text { if } x\left[\tau_{k}\right]=0
$$

$$
\begin{equation*}
u_{\Delta}[t]^{\circ} \equiv 0 \quad\left(\tau_{k}<t<\tau_{k+1}\right) \tag{3.9}
\end{equation*}
$$

On the other hand, if problem A under consideration does not have a solution which satisfies condition (3.7), or if the realized quantity $x\left[\tau_{k}\right]<0$ is amaller than zero, then what we must do is solve problem $B$ under the conditiona $\tau=\tau_{k}, x\left[\tau_{k}\right]$, and $T=0$ [ $\tau_{k-1}$ ] - $\tau_{k}$. Let the solution of this problem yield the quantity $\zeta\left[\tau_{k}\right]$. It is clear that now $\zeta\left[\tau_{k}\right]>x\left[\tau_{k}\right]$. The next atep is to solve problem $A$ for $\tau=\tau_{k}, x\left[\tau_{k}\right]$ and under the condition

$$
\left[\int_{\tau_{k}}^{\infty}\|w(t)\|^{1} d \tau\right]^{1 / t} \leqslant \mathbb{\delta}\left[\tau_{k}\right]
$$

This solution clearly gives us the quantity $T_{0}\left[\tau_{k}\right] \leqslant \theta\left[\tau_{k-1}\right]-\tau_{k}$. Let us ate $\vartheta\left[\tau_{k}\right]=\tau_{k}+T_{0}\left[\tau_{k}\right]$. The value of the control $u_{\Delta}[t]^{\circ}$ now depende on the value of

$$
\begin{equation*}
\mathrm{E}\left[\tau_{k}\right]=\zeta\left[\tau_{k}\right]-x\left[\tau_{k}\right]>0 \tag{3.10}
\end{equation*}
$$

Specifically, we set
if $\zeta\left[\tau_{k}\right]<\varepsilon\left[\tau_{k}\right]$

$$
\begin{equation*}
u_{\Delta}[t]^{\circ}=\frac{\mu\left[\tau_{k}\right]}{e\left[\tau_{k}\right]} w_{x\left[\tau_{k}\right], \zeta\left[\tau_{k}\right]}^{*}\left(\tau_{k}\right) \tag{3.11}
\end{equation*}
$$

if $\boldsymbol{\zeta}\left[\tau_{k}\right] \geqslant s\left[\tau_{k}\right]$

$$
\begin{equation*}
u_{\Delta}[t]^{\circ}=\frac{\mu\left[\tau_{k}\right]}{\zeta\left[\tau_{k}\right]} w_{x\left[\tau_{k}\right], \zeta\left[\tau_{k}\right]}^{\infty}\left(\tau_{k}\right) \tag{3.12}
\end{equation*}
$$

Construction is carried on until $\hat{\theta}\left[\tau_{k}\right] \geqslant \tau_{\boldsymbol{h}}$. Control (3.4) constructed in this way solves problem (3.1) to (3.3). It turne out here that $T^{\circ}[\tau]=T_{0}[\tau]$. Let us prove this result. First, let $\tau=\tau_{0}$. To begin with, let un verify that for any permisaible choice of $v[t]\left(t \geqslant \tau_{0}\right)$ and for $u=u_{\Delta}[t]^{\circ}$ the required $\sigma$-convergence (3.2) of the motions $y_{[m]}[t]$ and $z_{[m]}[t]$ occars not later than at the instant $t=\tau_{0}+T_{0}\left[\tau_{0}\right]$ provided the quantity $\Delta$ is sufficiently amall.

To show this it is sufficient to verify that for amall $\Delta$ the quantity $e\left[\tau_{k}\right]$ remains arbitrarily small with increasing time $\tau_{k}$ provided that $0\left[\tau_{k}\right]-\tau_{k} \geq \eta$ (e). (Here $\eta$ ( 8 ) and $\varepsilon$ are infinitesimals). In fact, as already noted in Section 2, the quantity $\varepsilon$ [ $\tau_{k}$ ] is the increment which mast be added to the control resource $\mu$ [ $\tau_{k}$ ] in order for the attainability domain $G_{1}\left[\tau_{k}, y\left[\tau_{k}\right], \mu\left[\tau_{k}\right]+\varepsilon\left[\tau_{k}\right], 0\left[\tau_{k}\right]\right]$ to encompase the domain $G_{2}\left[\tau_{k}\right.$, $\left.z\left[\tau_{k}\right], v\left[\tau_{k}\right], \theta\left[\tau_{k}\right]\right]$.

But if the quantity $\varepsilon\left[\tau_{k}\right]$ is amall, then the domain $G_{g}\left[\tau_{k}, z\left[\tau_{k}\right], v\left[\tau_{k}\right], \theta\left[\tau_{k}\right]\right.$ lies in a amall $\sigma$-neighborhood of the domain $G_{1}\left[\tau_{k}, y\left[\tau_{k}\right]_{\mu}\left[\tau_{k}\right], \theta\left[\tau_{k}\right]\right]_{0}$ Since (by conatruction) $\theta\left[\tau_{k}\right] \leqslant \tau_{0}+T_{0}\left[\tau_{0}\right]$ and since the domains $G_{1}$ and $G_{2}$ contract to a point an $\tau_{k} \rightarrow \theta$ [ $\tau_{k}$ ], we see that a aufficiently mall $\varepsilon\left[\tau_{k}\right]$ doen, in fact, guarantee the required $\sigma$-convergence of the motions $y_{[m]}[t]$ and $z_{[m]}[t]$ for all $\tau_{0} \leqslant \tau_{k} \leqslant \theta$ $\left[\tau_{k}\right]-\eta(\varepsilon)$.

From now on it will be convenient to represent the variation of the ayatem parameters with time $t$ on the plane $\{\varepsilon \zeta\}$. To prove the above atatement it is enough to show that for any $e^{*}>0$ and $\eta^{*}>0$ we can choose a number $\Delta^{\circ}>0$ auch that for $\Delta<\Delta^{\circ}$ the con* trol $u_{\Delta}[t]^{\circ}$ keepe the motion $\{\varepsilon[t], \zeta[t]\}$ in the domain $H$, i.e. that $\left\{\varepsilon[t]<e^{*}\right.$, $\zeta[t]>0\}$ for $\hat{\theta}\left[\tau_{k}\right]-\tau_{k+1} \geq \eta^{*}$.

Let ne conaider the domain $\varepsilon>\varepsilon^{\circ}, \xi>0$ (see Fig. 1), where $\varepsilon^{\circ}$ is a aufficiently amall number amallor than $e^{*}$. Let nam ahow that in this domain the quentity $E[t]$ can-


Fig. 1
not increase too rapidly. We assume first that in the domain $H$ the control $u_{\Delta}$ [ $t$ ] is formed in each interval [ $\tau_{k}, \tau_{h+1}$ ) not in accordance with the above rule, but rather on the basis on Formulas similar to (3.11) and (3.12) in whose right sides the argument $\tau_{k}$ has been replaced by $t$. (Here the quantity $\hat{\theta}\left[\tau_{k}\right]$ which is involvad in the definition of the quantity $\zeta[\tau]$ remains constant for $\tau=t$ throughout the interval $\left[\tau_{k}, \tau_{k+1}\right)$ ).

The following equations are valid in the domain $\varepsilon>0, \zeta>0$ :

$$
\begin{align*}
& \frac{d \zeta}{d t}=-\frac{1}{2 \zeta}\left[\left\|w^{\circ}\right\|^{2}+2\left(w^{\circ}, \delta w\right)\right]  \tag{3.13}\\
& \frac{d \varepsilon}{d t}=\frac{\varepsilon}{2 \zeta^{2}}\left\|w^{\circ}\right\|^{2}+\frac{\|\delta u\|^{2}}{2 \mu}-\frac{\|\delta u\|^{2}}{2 v} \tag{3.14}
\end{align*}
$$

These equations follow directly from the definitions of the quantities $\zeta$ and $\varepsilon$. Here $w^{\circ}[\tau]=$ $=w^{\circ}{ }_{x[\tau], T^{.}}(\tau)$ is the solation of Problem B for $x[\tau], T=\vartheta\left[\tau_{k}\right]-\tau ; \delta w=\delta u-\delta v-$ $-\varepsilon w^{\circ} / \zeta, \delta u=u_{\Delta}[t]-\mu[t] w^{\circ}[t] / \zeta[t] ; \delta v=v[t]-v w^{\circ}[t] / \zeta[t]$. In the domain $\zeta \geqslant \varepsilon \geqslant \varepsilon_{0}$ we have $\delta u=0$, so that

$$
\begin{equation*}
\frac{d \varepsilon}{d t}=\frac{e}{2 \delta^{2}}\left\|w^{\circ}\right\|^{2}-\frac{\|\delta v\|^{2}}{2 v} \leqslant \lambda \varepsilon \quad(\lambda=\text { const }>0) \tag{3,15}
\end{equation*}
$$

since [7] for $\theta\left[\tau_{k}\right]-\tau \geqslant \eta^{*}$ the quantity $\left\|w^{\circ}\right\| / \zeta$ is uniformly bounded. Integrating inequality (3.15), we find that throughout the time $t_{\alpha} \leqslant t<t_{\beta}$ during which the trajectory $\{\varepsilon[t], \zeta[t]\}$ remains in the domain $\varepsilon>0, \zeta \geqslant \varepsilon$, we have the inequality

$$
\begin{equation*}
\varepsilon[t] \leqslant \varepsilon\left[t_{\alpha}\right] e^{\lambda\left[t-t_{\alpha}\right]} \tag{3.16}
\end{equation*}
$$

Let us consider the function

$$
\begin{equation*}
V(\varepsilon, \zeta)=\left(\varepsilon^{2}-\varepsilon \zeta+\zeta^{2}\right)^{2 / 2} \exp \left\{\frac{1}{\sqrt{3}}\left[-\frac{\pi}{6}+\operatorname{arctg} \frac{2 \varepsilon-\zeta}{\sqrt{3} \zeta}\right]\right\} \tag{3.17}
\end{equation*}
$$

in the domain $0 \leqslant \zeta<\varepsilon$, the datum levels $V(\varepsilon, \zeta)=C>0=$ const appear in the Fig. l. The total derivative $d V / d t$ of this function for $e=\varepsilon[t], \zeta=\zeta[t]>0$ in the case $u=u_{\Delta}[\hat{t}]$ is given by Expression

$$
\begin{gather*}
\frac{d V}{d t}=\frac{\varepsilon V}{e^{2}-\varepsilon \zeta+\zeta^{2}}\left\{\frac{\left\|\omega^{0}\right\|^{2}}{2 \zeta^{2}}\left[\varepsilon-\zeta \frac{(\zeta-\varepsilon)}{\varepsilon}+2(\zeta-\varepsilon)-\frac{\mu(\zeta-\varepsilon)^{2}}{e^{2}}\right]-\right. \\
\left.-\frac{\|\delta v\|^{2}}{2 v}+\frac{\zeta-\varepsilon}{\varepsilon \zeta}\left(w^{\circ}, \delta v\right)\right\} \tag{3.18}
\end{gather*}
$$

and admits of the estimate

$$
\begin{equation*}
d V / d t \leqslant \lambda V \tag{3.19}
\end{equation*}
$$

This eatimate implies that throaghoot the time $t_{\alpha} \leqslant t \leqslant t_{\beta}$ during which the trajectory $\{8[t], \mathbb{S}[t]\}$ remaine in the domain $e>0,0<\zeta \leqslant \varepsilon$ we have the inequality

$$
\begin{equation*}
V[t] \leqslant V\left[t_{\alpha}\right] e^{\lambda\left(t-t_{\alpha}\right)} \tag{3.20}
\end{equation*}
$$

Since $\zeta \leqslant \varepsilon$ for $V>\varepsilon$ and $V=8$ for $\zeta=8$, the estimates (3.16) and (3.20) imply that Inequalty (8.16) applies throughout the time when $t \geqslant t_{\text {a during which the trajec- }}$ tory $\{s \mid t], \zeta[t]\}$ romaine in the domain $e>0, \zeta>0$

Now lot ne consider the variation of $V$ for $u=u_{\Delta}[t]$ once the trajectory $\{\varepsilon[t]$, $\zeta[t]\}$ has emerged onto the boundery $\zeta=0$ of the domain $\varepsilon>0, \zeta>0$. In this case the derivative $d \zeta / d t$ is given by Eq.

$$
\begin{equation*}
\left(\frac{d \zeta}{d t}\right)_{+0}=\lim _{\Delta t \rightarrow+0} \frac{\zeta-0}{\Delta t}=\sqrt{\left(D^{-1} H^{[m]} v, H^{[m]} v\right)} \tag{3.21}
\end{equation*}
$$

where $D$ and $H[m]$ are certain matrices which can be compated in the usual way.
Furthermore,

$$
\begin{equation*}
\frac{d \varepsilon}{d t}=\frac{d \zeta}{d t}-\frac{\|v\|}{2 v} \tag{3.22}
\end{equation*}
$$

so that for the derivative $d V / d t$ we obtain

$$
\begin{equation*}
\frac{d V}{d t}=\frac{V}{\varepsilon}\left[\frac{d \varepsilon}{d t}-\frac{d \zeta}{d t}\right]=-\frac{V}{\varepsilon} \frac{\| v \mathbb{R}}{2 v} \tag{3.23}
\end{equation*}
$$

i.e. the function $V$ does not increase for $\varepsilon>0$ and $\zeta=0$ with the control $u=u_{\Delta}[t]$ estimate (3.16) is therefore fulfilled for all times in the domain $\varepsilon>0, \zeta \geq 0$. Hence, if the quantity $\varepsilon\left[t_{a}\right]$ is sufficiently small, then subsequently at all times $t \leqslant 0\left[\tau_{k}\right]-$ $-\eta^{*} \leqslant \boldsymbol{\theta}\left[\tau_{0}\right]-\eta^{*}$ the value of $\varepsilon[t]$ will remain sufficiently small provided that $u=u_{\Delta}[t]$.

It now remains for us to estimate the effect of converting from the control $u_{\Delta}[t]$ to the control $u_{\Delta}[t]^{\circ}$ under investigation here. Without presenting detailed estimates for Eqs. (1.1), (3.13), (3.14), (3.21) and (3.22), which can be obtained without much difficulty in the domain $\varepsilon>\boldsymbol{\varepsilon}^{\circ}$ by the usual procedure for converting from a differential to a finite difference scheme of variable substitution, we shall merely state the final result: the deviation of the trajectories under investigation for $u=u_{\Delta}[t]$ per step $\left[\tau_{k}, \tau_{k+1}\right]$ is on the order of $o(\Delta)$, where $o(\Delta)$ is an infinitesimal of order higher than $\Delta$ (for the entire time during which the representing point $\{\varepsilon, \zeta\}$ remains in the domain $\varepsilon^{0}>\varepsilon^{0}$ ); this estimate $o(\Delta)$ is uniform for each fixed $\varepsilon^{\circ}>0$. Estimate (3.16) then implies the required smallness of the quantity $\varepsilon\left[\tau_{k}\right]$, since $\varepsilon\left[\tau_{0}\right]=0$.

Thus, for $\tau=\tau_{0}$ the control $u=u_{\Delta}[t]^{\circ}$ does, in fact, insure $\sigma$-convergence of the motions $y_{[m]}[t]$ and $z_{[m]}[t]$ for $t<\tau_{0}+T_{0}\left[\tau_{0}\right]$, provided the quantity $\Delta>$ $>0$ is sufficiently small. Similarly, since $\varepsilon\left[\tau_{k}\right]$ is small for amall $\Delta$ for any intermediate value $\tau=\tau_{k^{*}}, k^{*}>0$ (by virtue of what was proved above), we see that the control $u_{\Delta}[t]^{\circ}$ for $t \geqslant \tau_{k^{*}}$ guarantees $\sigma$-convergence of the motions $y_{[m]}[t]$ and $z_{[m]}[t]$ for $t<\tau_{k^{*}}+T_{0}\left[\tau_{k^{*}}\right]$.

On the other hand, taking $v^{*}[t]=\mu[t] u^{*}[t] / v[t]$ we see that for any $u^{*}[t]$ for $t>\tau_{k^{*}}$ arbitrary $\sigma$-convergence cannot be guaranteed for $t<\tau_{k^{*}}+T_{0}\left\lfloor\tau_{k^{*}}\right]-\alpha$, where $\alpha=$ const $>0$. This implies the optimality of the control $u_{\perp}[t]^{\circ}$ for problem (3.1) to (3.3).
4. The difficulties considered in the present paper are immediately removed if we assume $[1,8$ and 9$]$ the possibility of constructing the control $u[t]$ in the form

$$
\begin{equation*}
u[t]=u[v[t], z[t], \mu[t], v[t], v[t]] \tag{4.1}
\end{equation*}
$$

since here in the critical situation where $\mu=\nu$ it is sufficient, for example, to set $u[t]=$ $=v[t]$. If such direct discrimination of the motion $z[t]$ is undesirable, then the quantity $\nu[t]$ can be allowed for indirectly in computing the control $u$. This can be done by again introducing some aftereffect in the control law $u$. Taking $\gamma_{u}$ (3.1) as our criterion of the pursuit result, we construct Eq.
$u_{\Delta}[t]=u_{\Delta}\left(t, y\left[\tau_{k}\right], z\left[\tau_{k}\right], \mu\left[\tau_{k}\right], v\left[\tau_{k}\right], z\left[\tau_{k-1}\right], v\left[\tau_{k-1}\right]\right)_{0} \quad\left(\tau_{k} \leqslant t<\tau_{k+1}\right)$
in the following way. From the values of $y\left[\tau_{k}\right], \mu\left[\tau_{k}\right], z\left[\tau_{k-1}\right]$ and $\nu\left[\tau_{i-1}\right]$ we determine the instant of absorption $\theta^{\circ}\left[\tau_{k}, \tau_{k-1}\right]$ when the attainability domain $G_{2}\left[\tau_{k-1}\right.$, $\left.z\left[\tau_{k-1}\right], v\left[\tau_{k-1}\right], \theta-\Delta\right]$ firat lies inside the domain $G_{1}\left[\tau_{k}, y\left[\tau_{l}\right], \mu\left[\tau_{k}\right], \theta\right]$. We denote by $\varepsilon\left[\tau, \tau_{*} ; \theta\right]$ the quantity

$$
\begin{equation*}
\varepsilon\left[\tau, \tau_{*}: \theta\right]=\max _{z} \min _{y}\|y-z\| \tag{4.3}
\end{equation*}
$$

for $y$ from $G_{1}[\tau, y[\tau], \mu[\tau], \theta]$ and $z$ from $G_{2}\left[\tau_{*}, z\left[\tau_{*}\right], v\left[\tau_{*}\right], \theta-\Delta\right]$. Clearly, from the chosen $\theta^{\circ}\left[\tau_{k}, \tau_{k-1}\right]$ we have $\varepsilon\left[\tau_{k}, \tau_{k-1}, \theta^{\circ}\left[\tau_{k}, \tau_{k-1}\right]\right]=0$.

We now define the control $u_{\Delta}[t]$ (4.2) on the interval $\left[\tau_{k}, \tau_{k+1}\right]$ as the optimal program control which guarantees fulfillment of the condition

$$
\begin{equation*}
\varepsilon\left[\tau_{k+1}, \tau_{k} ; \theta^{0}\left[\tau_{k}, \tau_{k-1}\right]\right]=0 \tag{4.4}
\end{equation*}
$$

i.e. keeple the domain

$$
G_{2}\left[\tau_{k}, z\left[\tau_{k}\right], v\left[\tau_{k}\right], \theta^{\circ}\left[\tau_{k}, \tau_{l,-1}\right]-\Delta\right]
$$

inaide the domain

$$
G_{1}\left[\tau_{k+1}, y\left[\tau_{k+1}\right], \mu\left[\tau_{k+1}\right], \theta^{\circ}\left[\tau_{k}, \tau_{k-1}\right]\right]
$$

and maximize the diatance between the boundaries of these domains in some convenient metric. Clearly, it is always possible to guarantee fulfillment of Eq, (4.4) in our case. In fact, this condition already guarantees, for example, an extremal control $u^{*}(t)=u_{0}[t]$ aimed at the point of osculation of the boundaries of the domains

$$
\begin{gathered}
G_{1}\left[t, y[t], \mu[t], \theta^{\circ}\left[\tau_{k}, \tau_{k-1}\right]\right] \\
G_{2}\left[t-\Delta, z(t-\Delta), v[t-\Delta]+\beta(t), \theta^{\circ}\left[\tau_{k}, \tau_{k-1}\right]\right](\beta(t) \geqslant 0)
\end{gathered}
$$

as long as

$$
\mu[t]>v[t-\Delta]+\beta(t) \quad \text { or } \quad u^{*}(t)=v(t-\Delta),
$$

where $\mu[t]=\nu[t-\Delta]+\beta(t)$. But Eq. (4.4) guarantees fulfillment of the inequality $\theta^{\circ}\left[\tau_{k+1}\right.$, $\left.\tau_{k}\right] \leqslant \theta^{\circ}\left[\tau_{k}, \tau_{k-1}\right]$ so that we can continue our construction of the control $u_{\Delta}[t]$ in the same way for $\tau_{k+1} \leqslant t<\tau_{k+2}$ etc. The method of constructing the control $u_{\Delta}[t]$ just described insures convergence of the point $y_{[m]}^{[t]}$ and $z_{[m]}^{[t-\Delta]}$ at the instant $t \leqslant \theta^{\circ}$ $\left[\tau_{-1}, \tau_{0}\right]$, so that for a sufficiently mall $\Delta>0$ it also insures the required convergence of the points $y_{[m]}\{t]$ and $z_{[m]}[t]$.

This regularization applies not only to linear homotypic objects, but also in the very general case where successful completion of the pursuit process is possible with the control $u[t]$ taken in the form (4.1) (although the problem of the minimax character of the control $u$ generally does not require investigation). The conditions which guarantee encounter by means of control (4.1) are known for a broad class of problems with restrictions imposed on the instantaneous values of the controlling forces (e.g. see [1, 8 and 9]). Such conditions can also be derived for problems with integral reatrictions on the controls. We note, in particular, that fulfillment of the relation

$$
\begin{equation*}
\max _{v} \min _{u}\left\{\frac{\partial}{\partial t} \varepsilon\left[t+\tau, t+\tau ; \theta^{\bullet}[\tau]\right]\right\}_{+0}^{+\vec{j}}=0 \tag{4.5}
\end{equation*}
$$

at each instant $t=\tau$ of pursuit at all points of the phase apace where the realizations of the quantities $\{y[\tau], z[\tau], \mu[\tau], \nu[\tau]\}$ might occur is clearly sufficient for the anccessful completion ot paranit ander the condition (4.4).

From Eqs. (4.3) and (4.4) we infer immediately that thia condition is folfilled in a selfevident way in our case. In the general case more or leas effective aufficient conditions which insure convergence of the motions $y_{[m]}[t]$ and $x^{2}[m][t]$ and are implied by the conditions (4.5) can be constructed in terma of the planes tangent to the attainability domain: $G_{1}\left[\tau, y[\tau], \mu[\tau], \theta^{\circ}[\tau]\right]$ and $G_{2}\left[\tau, z[\tau], v[\tau], \theta^{\circ}[\tau]\right]$; this reduces to the inveatigation of functions aimilar to the quantity $e$ (4.3). The regularization deacribed in the present Section requires theoretical and experimental stady of the atability of the corresponding compatational mochema. Sach a atady in important in view of the involvement in the acheme of the close quantition $z\left[\tau_{k}\right], z\left[\tau_{k-1}\right]$ and $v\left[\tau_{k}\right] v\left[\tau_{k-1}\right]$. It appears that so fer there has been no anfficiently complete inquiry into thie problem.

## BIBLIOG RAPHY

1. Pontriagin, L.S., On the theory of differential games. Usp. Mat. Nauk Vol. 21, No. 4 (130), 1966.
2. Isaacs, R., Differential Games, New York, 1965.
3. Krasovskii, N.N., Repin, Iu.M. and Tret'iakov, V.E., Some games situations in the theory of controlled systems. Izv. Akad. Nauk SSSR. Tekhn. Kibernetika No. 4, 1965.
4. Krasovskii, N.N. and Tret'iakov, V.E., On the encounter-of-motions problem. Dokl. Akad. Nauk SSSR Vol. 173, No. 2, 1967.
5. Krasovekii, N.N., On the problem of paranit in the case of linear monotype objects. PMM Vol. 30, No. 2, 1966.
6. Krasovskii, N.N., On the enconnterof-motions problem in games theory. Dokl. Akad. Nauk SSSR Vol. 173, No. 3, 1967.
7. Subbotin, A.I., On the problem of the game-interception of motions. PMM Vol. 31, No. 5, 1967.
8. Mishchenko, E.F. and Pontriagin, L.S., Linear differential games. Dokl. Aked. Nank SSSR Vol. 174, No. 1, 1967.
9. Pontriagin, L.S., Linear differential games. 1, Dokl Akad. Nauk SSSR Vol. 174, No. 6, 1967.

[^0]:    *) See [6], p. 535 for an explanation of our use of paren theses and aquare brackets to denote controls an functions of time.

