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The irreguiar cbaracta of the problem [l to 41 of tbe minimax of the time-to-encounter of 

two linear homotypic objecta is discnosed. The problem is regularized by introducing a dim- 

Crete scheme of variation of the predicted instant of enconnter. A strategy ia constructed 
which guarantees a result which i8 in a certain sense optimal for the pursuer to within an 

arbitrarily nmall 8 > 0. 

I. Let us supposed that the motions of the pomuing and panned objects, y(t) and x(r) 
respectively, are described by the linear differential Eqs. 

dyldt = Ay + Bu (~*~I 

dzldt = AZ + Bv (1 a 

Here y(t) = (ylW,..., y,(dl and t(r) -9 It t(t),..., z,,(t)1 are the phase coordinate vectors 

of the mstrolled objects; a and v are the t-dimensional vectors of the controlfing forces; 
A md B are honetent matrices of the corresponding dimensionalities. Let us isolate certain 
phase coordinates yfk and zik (k = I,..., m< R) whose coincidence at the instant of mea 

ting t = 6 is the pursuit goal. Without limiting generality we can assume that i, = k. We 

shall conaider ‘the chosen coordinates as the controlled coordinates [S]. From now on it 

will be convenient to consider the sets of coordinates {yi I= y.cml; !.,I = xlml (i 4 I,..., mf 

a0 vectors Iq, 11 q (i = l,...,m ) in the m-dimensional space Q. 

Let us investigate the problem [4] of th e minimax of the time-to-encounter of the objecta 
over a portion of the isolated coordinates as a differential positional pursuit game [l to 3] 
under the condition that the control resources u(t) and v(t) available for use for f >/T are at 
each given instant 7 restricted by integral conditions of the form 

09 m 

s 
’ Ilu(t)IIadlQt2(~), 5 IlTv (t) II -a dt llrf vB (5) (4.3) 
T 

From the conditions of the problem tbe contra; u at each instant 7 must be fonaed in 
accordace with the feedback principle on the bards of meaanrements of tbs quantities y(-rj 
Z(T), P(T), and I&), i.e. in the form 

u frl = u fl/ ITlt x irl, p [%I. v frll (14 
The pursued player is anenable to both the program control u = v(t), t.37, and to the 

feedback control (*I 

*) See (61, p- 535 for an explanation of our use of parentheses and square brackets to de- 
note controls aa function8 of time. 
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u IT] = tJ II/ lzl, 2 Irk p ITI, ‘v ITI1 04 
We must tmphasfze that the pursuer is not notified of the controls tr = v[t] or v = u(t) 

chosen by tbe pursued player for instants t 3 7. The strategies u and u, i.e. the aets of 
functions of the form (1.4) and (1.5). will b e considered permissible provided that the fol- 
lowing coaditfona are fulfilled during their realizations u = a[tl, u = v[t] or v = u(t): 
a) limiting condftfona (1.3) arc not violated; b) Eqs, (1.1) aud (1.2) do no fose mcantng. 

Thue, the problem con&to in Finding from among the permissible strategies optimal 
strategies u”- v”[y, x, ~1, Y] utd v”= u” [y, t, g, V] such that the following condition is 
fulfilled for all initial values y&J, rfr,), g (to), and r~(to) (from the specified range of their 
variation): 

T u”, ve = min, max, T,, v (i.fu 
where Tuet= 6,,,- 7 is the time-to-encounter of the motions. 

The game problau on the encounter of two controlled motions is solved in [51 for m = n. 

In this cane problan (1.6) is solved by the external aiming rvle which consists in the aiming 
at each instant t = Tof the motions y(t) and t(r) towards the point ~o[?l of osculation of the 
boundaries of the attainability domains Gt[7, y[~], pf~], #,f and C2[7, zf ~1, v[T], fj,] 

cosstructed for the instmtt of absorption 6 = 8, of the process z(l) by the process y(t) 
(e.g. eree [3), pp. 7 and 8). If the pursuer consimcts his own strategy on the basis of the 
extremal- aiming rule, then for any permissible v throughout the time-to-encounter the boun- 
daries of the attainability domains G~[T, y.1~1, P[T~, #,f and G$T, z[T], vf-rf, e,] oscu- 
late at a single point, and pursuit is successfully accomplished at t< 6, provides that the 
domain Gl,lay inside the domain C, at the initial instant of pursuit. 

The problem of the minimax of the time-to-encounter of the motions yfml(t) il.11 and .rfml 
(11 (1.2) is more complicated in the case where m < n, Here, as with m = n, we can construct 
the extremal strategies 

(1.7) 

where IU’= -1, xc+] (tf (7 5 L < 61O] is the optimal program control for the ancillary problem on 
the trram cr of the system t 

z’= Ax -j-Bw (1.9) 
from the state 

5 = 2 IT1 = y lzl - 2 [rl 

to the po8ition correspowiing to 

&ml (So) - 2 [m] (so) = 5[m] (6”) = 0 

under the restriction 

(1.10) 

and under the coaditfon 

To=#*- 7 = min, T, (I Al) 

“f%io andlluy problarn will be called Problem A. In addition to Probluu A we ahall later 
naed ancillary Problan B on the transfer of system (1.9) from the state X[T] to the position 
x,m~f@= 0 in the mpadfied time 7’~ 6 -T under the condition 

8 

[juw(t)rdr]” = min (1.12) 



A problem on the encounter of motions in games 3 

Let us introduce the notation 

(1 A3) 

where I.u~~[~I, T (t) is the solution of problem B. It then turns oat that the instant t = e” of 

arrival of the motion x crnJ (t) at the position X[~I z 0 in problem A coincides with the ins- 

tant of absorption ‘9, which is the smallest positive root of Eq.. 

5 (5 [Xl, 7, 8) = p fzl - Y [zl 3 x Irl (1.14) 
If the players are guided by the extremal strategies uo (1.7) and uo (1.8) then the mec- 

ting occurs at the instant of absorption t = 6,. J ‘ust ss in the csse m = n. But now, in con- 

trast to the case m = n, the cxtremal strategy uo (1.7) does hot guarantee for all permissi- 

ble v the uniqueness of the point of osculation $‘[+r] throughout the time-to=enconnter 7. 

This statement can be verified, for example, in the case of the motions 

dyz 
dt= Yar 

dz1 
-= 22, dt 

dy, 
--g = 241, 

d+z 
7 -2 Vl, 

(1.15) 

(1.16) 

where it is necessary to effect a meeting only in the coordinates yt. x1 and yJ, 23. The 

extrcmal control uo[~] (1.7) in this case is given by 

where the quantity To is the smallest positive root of Eq. (1.14). 

3 [(X1 + z&Fp + {Se + TJF)?] “2 

Ts I 
=p--v (1.18) 

If the pursuer makes use of the control uo (1.17) and if the pursued player chooses the 

control u(t) = $ = const, where II+ 11 is a sufficiently small quantity, then there exist initial 
data y (t,), t (to), ~ftof and v&o) such that the domains G, and G, merge at some instant 

f = T* prior to the coincidence of y t(t), y3 (:I and zt (L), zJ (t). But at the instant of merging 

of the attainability domains, which in the general case of system (1.1). (1.2) under restric- 
tions (1.3) constitute congruant and similarly oriented ellipsoids, the number of points of 
osculation 9’ of their boundaries becomes infinitely large and the extremal aiming rule is 
violated. At such instants the pursued player has the opportunity of escaping from the pur- 
suer’s domain of attainability. 

Thus, for m < n the choice of the control u[7] on the basis of the extremal aiming rule 
does not guarantee meeting of the motions y,[,,,j [d sod z Im~ [t] in a time 7 \c t < 6,. It 

turns out, furthermore 141, that for m < n it is generally impossible to construct a control 

II = u*[y[~], z[T], /.t[~], vf~l] which would ensure meeting within a time t 6 *,[T’] . These 

difficulties for the case m < n can be overcome, however, through suitable rcgularization of 
the problem. 

P. Our earlier paper [4] contains a rcgularization of the above problem based on the intro- 

duction between the boundaries of the domains C, and-G, of the intervening layer afforded 
by an additional margin E (7) > 0 in the control resource p (7). 

Here we present snotber rcgularization of the problem based on a discrete control scheme 
which allows us to bring the point ylml [t] into an arbitrarily small neighborhood of the point 

x[mf (6o)* 
Let us assume that at the initial instant of pursuit L = to the domain G&o, z(to), v(to), 

eel lay inside the domain G,[t,, y(to 1, I, eel and that their boundaries osculated at 

the single point g’fto]. The puraner can then make use of extremal control (1.7), nt least 
until the instaut t = 7+ at which the domains 



4 N.N. Kmxouxkii and Y.E. Ttcfiakov 

IIWBO. We introduce tire notsth 

Y [%I = Y,, z b*l = zs, p [%*I = p*, y [?*I = v, 

The Eq.xL~.j-& =p. -v. 9 0 is valid at the instant t = 7,. 

At the in&ant I = %, i.e. at the point y,, I+, ?L, = 0, the most natural courme ie to 
choose the control a[~,1 from tht randomization condition (21 for ertremal strategies in the 
came of an infinite number of extremal aiming points. The pursuer can be rimed at any of 
these pointm at each ioatant I = T, with equal probability of success. But by virtue of the 
symmetry of the attainabilfty domain each extremal control is associated with an extrcmal 
control of equal in norm but opposite mign. Hence, the average value of all the extreme1 
mtratngiem at the inmtsnt of mergfn 
im mast natural f*) to set J7.1 = u. 9 

of the attainability domains is equal to zero. Hence, it 
y+, I*, Cc,, V,] = 0. 

However, et subsequent instants t > TC the domains G, and G, are, as a rule (**I, no 
longer merged, ao that it becomes necessary to choose the control u fy [V-I, z !7], ~[71, 
u[T~] from other considerations, e.g. by once again metting u = IQ, (1.7). This renders the 
right midem of differential Eqs, (1.1) irregular; they turn out to have n discontinuity at the 
pofntx.=y* -2+,3i*rJi*-v* = 0. it is therefore advisable to convert to a discrete con- 
trol system. Let urn choose a small AT > 0 and set u (I) I 0 for the time T+ 4 t < 7, + 47. 
It is easy to show that if the domain G, remains inside the domain G, tbrou 

$ 
out the time 

t > T,, then the encounter will occur not later than at the instant t = e,f+?-, + The contrary 
case is unfavorable to the pursuer. 

Let urn suppome that the pursued plsyer has chosen a control u(t) f-r+ < t < 7* + ‘1~) 
aucb that a portion of the domain 

Gp t$ + AT, z it* + Ad, v h, + Ad, 4 id] 

lies oataide the boundariee of tbe domain 

4 fz, + AZ, I/ k* + Ad, fi h, + Ad, *o h,)l 

In accordance with Eq. (1.14) a new instant of absorption fi,[+r* + Arl occurs at the 

instant t = T, + i\7; and the domain G2!~, + AT, Z[T, + ATI, v [T* + ~IT],@&T* + !IT~I 

lies inmide the domain G1f7, + AT, Y[T* + AT]. ,u[T, + Ad, ()o[~* + AT-~], touching it 

at the single point 4’. It is then possible to make uee once again of extremaI strategy (1.71, 

aimiag towards the point q* until the domains G, and C, merge once again. 
It is reasonable to hope that by cyclically alternating the extremai aiming rule with a 

control conmtructed in a short time AT > 0 on the basis of the randomization condition we 
might obtain a regular strategy (an R-strategy) which gusrautees encounter at au instant ar 
b&rarity close to the inmtemt of absorption (as iisr + 0). Unfortunately, this simple technique 
of choosing the control u does not yield the desired result. 

Let urn illustrate this for the case of motions (1.15) and (1.16). Let us assume that the 
instant t = 70 I 0 when the domains C, and G, merge has arrived, and that the position 

y~7*l-~-ual+~,o,01,xf~~l=10,e,o,ol was attained at this instant; in addition, 

we auume that ~[TJ - v[~+l = 1, *,[7*] = a> 0. Stipulating that v(r) = 10, 01, u ft) = I $, 
0) daring the time A 7, we can write ont Eq. (1.18) for determining the instant of absorption 
f&,L~e + AT’], 

(L--~l’(d-A~~-3[(Ar--O--_)+(f--Ar)(8-A~~p=O (2.1) 

It im easy to see that for a small $ > 0 the smallest positive root of Eq. (2.1) which is 

l I The control n[%] chosen from the condition min, max,ds/dt is similar. Here a ia an 
e&mate of the poasfble overhang of the domain G, beyond the domain G, fin some con- 
venimt metric) bee below Section 3) 

**I The domafnm G and G, will certainly drift aput provided tbat the controls u and v do 
not vanish sfmn 1 tsneously for L > Tt . 
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equsl to iJ,,[~a + Ah.7j is arbitrarily large for a snffidently small AT. Hertce, tbe contd 

law just deamihad ~narally caaaot insure encoamter at iastattts close to the iastaat of 
absorption 8 [~a]. We cmr also verify that this technique does not pumtec E-convetgeocs 

fort6 l&J% P . 
Let na attempt to coastmet the R-strategy in a different wy. Let ttrr hold the namber 

= 6, fixed sud assume once ainthatforu(t)wO(7r,<t<7++A~)aportion 

omain C2[7, + AT, a[~, + AT], v 7, + A 71, #*] has exceeded the boundary of the ? 
domain C, [T* + AT , y[+r* + AT], pf 7, + AT], 3.1. Let 8171 be the smallest quantity 

necessay for the domain c~[T, r[~], v[T],~,] to lie inside the domain C~[T, y [T], c1[71 

+ 6 [z], 6,] for instants t > %s. Heace, 8 [%.] can be detenaincd from the condi- 

tion 

e Izl = 6 (It fzl, z, %J - x ftl (2.2) 

where <can be computed from Formula (1.13). Once tbe time AT has elapsed we choose 

the pursuer’s extremal control in the form 

where UI’ *I+], C[7] @f is th e solution of problem A under the condition 

(2.3) 

(2.4) 

Let the pursuer continue to make use of tbe control u,[zI (2.3) until the domsins C 

[z, I/ Id, p Id + 8 Id, w and Gr Ix, z id, v ITI, @,I merge, ire0 until a~ ‘I 
vai&es. After this for the time AT we once again set u(t) u 0, etc. If the control tecbni- 

qne just described did, in fact, guaratee arbitrmy smallness of the quantity 8 (@,*) as 

AT + 0 for all permissible u, then by an instant t < 6, the motion &ml It1 would en- 
ter en arbitrmily small nei&borhood of the point zfm] (6,), which would signify satisfec- 

tory solution of the problem. This does not happen, however. 

Indeed, from the definitions of the quantities 5 and e (see (3.131, (3.141, and (3.21) be- 

low), we find that for <= 0 

d6 Gldt 
- = d~/dt-~~u IF/h de 

while for small <> 0 we have 

(2.5) 

where 6 v = v - vw”/< and where O(l) is an infinitesimal of order 5. The quantity d </dt 

in (2.5) is strictly positive ii ~‘4 0 and vanishes for u = 0. If u = t,!/= const, where the quan- 

tity 11 $11 is sufficiently small, then d ( /de (2.5) is arbitrarily close to unity. However, for 

5 > 0 and 8 <v we see that, first, d(/dt < 0, and second, that the quantity d[/de (2.6) is 
close to two. Hence, for such a u (however small our AT) the function e(t) can incresse 

proportionally to time with a proportionality coefficient which does not tend to zero as A7 + 

+ 0. This means that e (t) cannot be made smaller than a preselected positive number by the 

instant t 3: 6,. Hence, as AT -B 0 this method of constrncting the control u for u = r// = const 

gives rise to a characteristic slippsge state which produces e considerable increase in e 
(t). 

& In this section we shaI1 develop a solution of the problem which will enable us to 

overcome the difficulties described above. The modification of tbe problem about to be dis- 

cnssed is bssed on a discrete scheme of variation of the control u which is sccompanied. 
as towards the end of Section 2, by brshing of the quantity *a [T]. However, we shall now 
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make use of a smoothed extremal control. This will enable us to circumvent the diffical. 

ties which we confronted in Section 2. Let us now describe the proposed method of con- 

structin the control. 
Let f Tr ] (k o 0, l,...) be a sequence of instants of time; let ?k+t - %a = A. Let 

the symbol u& [t] denote the control u, which changes Ody at the instSnt6 t =_Zk . 
The value of LLA [t] in the interval f$, $+&a then determined only by the qnanti- 

tiea realiasd by the instant t = %a. In choosing the control s in this way we take the 

quantity 

YU = gW, {lim sup [gup,T,g, v II (a>Q (3.0 
A-Ml 

BB our criterion of thcgurauit results. 
Here the number TWA,, denotes the instant t = IY + T& et which the condition 

(3.2) 

is fulfilled for the firat time for the chosen control t&f and the chosen faw for constructing 
the coatrolsi[t], and for the stipulated initial state y [t], z [Z], p [Z], Y [Z]. The 

problem now consists in choosing the optimal control u’%] which gives the minimum 

T” = yug= min,y, (3.3) 
for any initial conditions 9 [t], z [z], p [Z], Y [r]f rom the domain of their possible 

variation. AS our arguments which determine the extremal control UA [t]” in the inter 

vale ffk, tc+t) we take the values of the variables y I$], z [%a], f& [z,], Y i~,l and 
of &e ancillary variable 6 [%a] whose meaning will be explained below. Thus, we con- 

struct the control 11~ [t]” in the form 

UA [t]” = 11. [y [$]t z [$]* p if,], v [zkh 6 [%i-l11” (% < t < zk+.l) (3.4) 

The algorithm which determines the right side of (3.4) and the sequence of values 

21) [tk] is as follows. Let pursuit begin at t = Za. From now on we shall always assume 

that the inequality p [z,I > v [toI is fulfilled at t = Z, and that Problem A has the 

finite solution To [Z,] for t = To, X [To] = y [To] - 2 [$I, x [to] = p [To] - 
- v .[$I] l 

Let us set 6 ]7_1] = 4 [TO] = To -j- TQ [x0]. ‘fha control uA[t]” fn FOR&a (3.4) 

iS defined by the following two equationa of differing form: 

if X I$1 > 0 

VA [t]” = (3.5) 

if X [Tel = 0 

UA [t]” E 0 (ro<t<G) (3.6) 

Now let %=%k> To e We shall determine the quantities 8[til recurrently; thus, we 
aSSIDe that ib[~,_,~ is know0 at the iUStUlt r = tk. ff the p”“ltft)’ x [Tk]=pL[$l 
- v[Q] > 0 was realiaed at the instant Z=tk, then we once again solve problem A 

for the realized r=zI, 5 [%a]=~ [Tk] - z[‘c~], X = X IrJ. 
Let ua arome firat that aolotion of this problem yields 

(3.7) 

uA It I” = $f zo: pk,, y [rk:] @k) (Tk < z < ‘r,,,) (3.8) 



(3.9) 
On the other hand, if problem A nnder conaidaration doea not have a solution which sat- 

irfiar condition (3.71, or if the re8lized qn8ntity %[%h] <o in amailer than zero, then 
what we moat do ia solve problem B under the conditiona Z = ‘C;L;, z [rk] , and T = 6 
[Tk-11 - ?k. Let the l olntion of this problem yield the quantity c [r,}. It ia cleu thet 
now tr tz,1 >x b&l. Tb 8 m&It etep in to solve problem A for % = %h, 5 [Th] and Dfl- 
der the condition 

This aolutfon clearly gives us tie quantity To [%&I < 6[Z&-ll - lk* Let ua eat 

6 [r,[ = zk + TO [rk]. The vehe of the control UA [c]” nOW depends on the vebte of 

e [zh] = 16 [x&l - x [%k] > 0 (3.101 

Specifically, we set 

if t [r+r] < 8 [rk] 

uA ItI” = $f w: tTk,l, t [?,I tzk) (3.11’1 

(3.12) 

Construction ia cerrfed on ontil 6 [rh] > Tb. Control (3.4) constructed in thin way 
aolvea problem (3.11 to (3.31. It turna out here that T” [%I = To [z]. Let ne provu thin 
reeuft, F&t, Iet z = z,. To begin with, 1st us veriiy that for any permissible choice of 
v [t] (t > Zc) and for U = UA hl” the requiredff-convergence (3.21 of the motions 

v[ml [tI and zfml ItI occurs not later then at the instant t = 5 + T,, [toI provided 
the quantity A io l nffioiently small. 

To ahow this it is aofficient to verify that for amall A the quantity 8 [oh] remdna ar- 
bitrarily mmall with iocreuing time $ provided that 6 [t&l - $ > tl (IX). (Here tl (8) 
and 8 are infidtesfmahd. In fact, aa already noted in Section 2, the qnantity 8 [tk] is the 
increment which must be added to the control resonrce ;p [rkj in order for the attainability 

domain Gl [z , y 

But if the quantity f5 [%k] i8 amall, then the domain Gs [Zk, z [$:], v [r ],# [$]I 
liea in a amall cr-neighborhood of the domain Gl [%kc u [%kl#p [$I, 6 [T,]! Since (by 
comtruction) 6 [$I < To + To [Ze] an s nce the domain* Ct and G, contract to a d i 
point ‘a rk +f) f$& we 688 that a 8uffioi~tly small 8 [$I does, in fact, guUantOe 
the reqaired @-convergence of the motfona P[,,,J [t] and Zfml [t] for a11 70 < $ < 6 
[Tk] - ‘1 (8). 

From now on it wfll be convenient to repremnt the vuiation of the syetem parameters 
with time t on the plane { 8 6) . To prove the above l tat(rmeat it im enongh to l how that for 
any tP >o and q+>o we can choose l nnmber A’> 0 mob that for A < A’ the oon- 
trol r&A [f]’ keepe the motion (8 [i], 6 [t]] fn the dom& &, i.e. that (t[f] < e*, 

Tit] > 0) fat @b,l -?&.I > q*. 
Let II* conrider the domain s > e”, f > 0 bee Fig, 11, where 8” io a sufficiently 

amafl number nmaller thea e* . Let ua show that in this domain the qnantity e [t] can- 
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not increase too rapidly. We assume first that in the 

domain !f the control 24~ [t] is formed in each interval 

[Tir, a+~) not in accordance with the above rule, but 

rather on tbe basis on Formulas similar to (3.11) and 

(3.12) in whose right sides ths arfpuaent %k haa been 

replaced by t. (Here the quantity 6 I%,] which is in- 

volved in the definition of the quantity g[T] remains 

constant for z = t throughout the interval ]ZR, ~k+~). 

The following equations are valid in the domain 

e > O;$‘O: 

-=-+q+2(w”, 8tfJ)] 
dt 

(3.13) 

de 

dt = 26% 
II 6% IP u J&J IP 

‘@“p+~-~ (3.14) 

These equations follow directly from the deffnitioas of the quantities 4 and E’, Here UJ”[~] = 

“-“tT?J~; ‘*; is th e solution of Problem B for r[r], T = @[tk] - z; &,y = 6~ - 60 - 
24 = UA it1 - 

the domain’c > e > 8,~ 

p ItI w” it1 / 5 [tl; 6u = u It] -vuP It1 / c It]. In 
we have 6u = 0, so that 

de - .qp+!gf~~e 
Ti - zp 

(IL = conat >!O, (3.15) 

sfnce[?I for 6 It&l - T > q* the quantity 1\tu”l\/~ is uniformly bounded. Integrating 

inequality (3.151, we find that throughout the time t, < t < tg daring which the trajec- 

tory (8 tt1, g ItI) remains in the domain E > 0, 6 > E, we have the inequality 

8 [t] < 8 [to] eA [t-fal (3.16) 
Let us consider the function 

V (43, E) = (ea- et + 62)1/‘esp 
{ [ 

+3 - $- + arctg %]I (3.17) 

in the domain O,< << 8, the datum Ievels V f ts, 5) = C > 0 = const appear in the Fig. 1, 

The total derivative dV/dt of this function for 8 = g ItI, 6 = c [t] > 0 in the case 

U = UA (t] is given by Expression 

and a&&s of the estimate 

&/dt \c W (3.19) 

T&i* estimate implies that throughout the time 

tory (8 tt], 0 it]] 

t, < t < tg during which the trajec- 
remains in the domain 8 > 0, 0 < g < e we have the inequality 

V [t] <V [ta] excr-18’ (3.20) 

Since t< e for v> e and V=g for fr=8, the estimates (3.16) and (3.20) imply 
that Ino alfty (3.16) applies throughout the tfme when t > t, during which the trajec- 

tory {g%. c it]} retuainsinthedomain8)& f>o 

Now let us consider the variation of V for u = =A [t] oncLI the-trajectory (e ft], 

h [t]) has etmrged oato the boundary c- 0 of the domain 8 > 0, 8 > 0: In this cane 

the derivative d(/dt is given by Eq. 

(3.21) 
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where L) and Hlml are certain matrices which can be compnted in the usual way. 

Furthermore. 

de dc If 1’ k 
dt=dt-2v 

so that for the derivative dV/dt we obtain 

dV V de d< -=- C 1 v II 1’ IP --- =--- 
dt e dt dt E 2v 

(3.22) 

(3.23) 

i.e. the function V does not increase for 8 > 0 and c= 0 with the control U = UL\ ]t] 

estimate (3.16) is therefore fulfilled for all times in the domain E > 0, c > 0. Hence, if 
the quantity E f&f is sufficiently small, then subsequently at all times t < 6 ]Zkf - 

--* < 6 [toI - 9 * the value of 8 (t] will remain sufficiently small provided that 

t.$ = @A ]tf . 
It now remains for us to estimate the effect of converting from the control UA [tl to 

the control UA ]tf” under investigation here. Without presenting detailed estimates for 

Eqs. (1.1). (3.131, (3.141, (3.21) aud (3.221, which can be obtained without much difficulty 

in the domain 8 > EO by the usual procedure for converting from a differential to a finite 

difference scheme of variable substitution, we shall merely state the final result: the devi- 

ation of the trajectories under investigation for u = UA [t] per step [rs, %r+d is on the 

order of o (A ), where o(h) is au infinitesimal of order higher than A (for the entire time 

during which the representing point { e,f;) remains in the domain e”> ~‘1; this estimate 

o (A) is uuiform for each fixed E’ > 0 . Estimate (3.16) then implies the required small- 

ness of the quantity 8 fxsf, since 8 Idol = 0. 
Thus, for Z = to the control U = ud. ]tf” d oes, in fact, insure u-convergence of 

the motions #[,,,I [t] and zlrn] ]tf for t < ro + T, [t,], provided the quantity A > 
> 0 is sufficiently small. Similarly, since 8 IZk*l is small for small A for any intermediate 

value t = Zk*, k* > 0 (by virtue of what was proved above), we see that the control 

Uj. Dl” for t > ‘tk* guarentecaa-convergence of the motions $/[,I [1] and Z[~J [t] 

for t < tp + To [tk*]. 
On the other hand, taking u* [t] I- p [t] IL* [t] / v [t] we see that for any u*[t] for 

t > Tk* arbitrary u-convergence cannot be guaranteed for t < rk* f To [up] - 0, 
where u = const > 0. This implies the optimality of the control UA [If” for problem (3.1) 

to (3.3). 

4, The difficulties considered in the present paper are immediately removed if we as- 

uume [ 1, 8 and 9] the possibility of constructing the control u It] in the form 

1L [tl = U III It], r itI7 p ItI, v ftl, n It11 (4.1) 

since here in the critical situation where p = v it is sufficient, for example, to set tilt] f 

= y[t] . If such direct discrimination of the motion z[t] is u.ndesirable,thcn thequantity 

u[t] can be allowed for indirectly in computing the control II. This can be done by again 

introducing some aftereffect in the control law u. Taking yo (3.1) as our criterion of the 

pursuit result, we construct Eq. 

U‘S%_ ftl = uA (tl Y [xJ* r [TJ’ IL iq, v Ir,lv 2 IQ-11’ v IT,;-$0 (Tk G t < Tk+J (4.2 

in the following way. From the values of k [z,], p irk], I ]r,_,] and v [z!*_t ] we deter- 

mine the instant of absorption 6” [xs, x,+tl when the attainability domain Gr {xk_r, 

s @r_,l. v Ix*_& 6 - Al first lies inside the domain G1 [I,;, y [s], p [~1;],-f)]. We 

denote by e [r, x*; ct] the quantity 

a [+, ‘5,; 61 = max, min, ]I Y - 2 11 (4.3) 

for y from G Ix, y [xl, p 1x1, 61 and 1: from Gs ix., z IT* I, v b.1, 6 - Al. Cleuly, from 
thy aiwwm 6” [zk, ~a_~] we have e &., rx_1, 6” Irk, sk_,i] = 0. 
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We aow define the control ttA It] (4.2) on the interval [zk, Tk+%] as the optimsl proepsm 

control which fgrusntees fnffillment of the condition 

s Pk+tl Tk; 6” &. Q_,II = 0 (4.4) 
i.e. keeps the domsin 

G, 1% x w, v ITkl, 6” I%*, y_,l - Al 
fnslde the domsin 

and maximizes the distance between the bonodaries of these domains in some convenient 

metric. Cleuly, it is slways possible to gatantee fulfillment of Eq. (4.4) in our case. In 
fact, this condition already gnsrsntas, for example, an extremal control u*(t) = u&t] aimed 

st the point of osculation of tbc boundaries of the domains 

Gt it, g If]. B Itl, 6” fx** rk-tl] 

G, [t - A, z (t - A), v [t--Al + B 01, 6” bk. ~~_~ll (B(t) & 0) 
sa long as 

p It] > v It - Al + fl (t) or u+ (t) = v (t - A), 

where p[tl= v[t - A] + P(t). But Eq. (4.4) guarantees fulfillment of the inequality 6” [r,,,, 

$I< 6” I$’ t)F__ll SO that we can continue our constraction of the control u4 [t] in the 

same way for Tr;+t< t < Tx+p etc. The method of constructing the control u4 [t] just 

described iasures convergence of the point ~/f,,~[t] and 

[v-t, %I t 
z[,,,,[t-A] at tba i&taut t < 6” 

no that for a sufficiently amall A > 0 it also insures the required convergence of 

the points grml !t] and xtml it]. 
This regularization applies not only to linear bomotypic objects, but also in the very 

general case where successful completion of the pursuit process is possible witb tbc con* 

trol a(t] taken in the form (4.1) (although the problem ofihe minimax character of the con- 

trol u generally does not require investigation). The conditions which guarantee encounter 

by means of control (4.1) are known for a broad class of problems with restrictions imposed 

on the instantaneoos values of the controlling forces (e.g. see [I, 8 and 97 ). Such conditions 

can slso be derived for problems with integral restrictions on the controls. We note, in par- 

ticular, that fulfillment of the relation 

max, min, I~~I’+r,t+r:~*Irl]}~=o (4.5) 

at each instsnt t = z of pursuit at at1 pointa of the phase space where the realizations of 

the qusntities {g [T], 2 [r], p 1x1, v [r]I might occur is cleuly sufficient for the auccess- 

ful completion ot pursoit under the condition (4.4). 

From Eqs. (4.3) and (4.4) we infer immediately that thia condition is fulfilfed in a self- 

evident way in our case. In the general case more or less effective sufficient conditions 

which insnre coavergsnce of the motions 8fml [t] and xl,,,] [t] snd ue implied by the 

conditions (4.5) can be constructed in terms of the plares tmgeut to the attainability do- 

msins G, Ix, g 1x1, B (~1, eOf%]] and Ga [t, I [T], v [T], W’t~ll; this reduces to the in- 

vestigation of fnnctions aimflu to the qusntity a (4.3). The replsrfzatfon described in the 

present Ssction rsqnirss theoreticsI snd experimentsl study of the stability of the corres- 

ponding compntstionai sohems. Sch s study is important in view of the involvement in the 

s&ems of the class qusntitieo I [TJ, I [rk_,] md v [T~]v [T&_~]. It appesrs thst so 

fu i&we has hssn no suffkisatly compiete inquiry into tltf~ problsm. 
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